0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 503 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 192 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 LowerBoundsProof (⇔, 0 ms)
↳14 BOUNDS(n^1, INF)
↳15 typed CpxTrs
↳16 LowerBoundsProof (⇔, 0 ms)
↳17 BOUNDS(n^1, INF)
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^1, INF)
not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
not(and(x, y)) → or(not(x), not(y))
not(or(x, y)) → and(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
They will be analysed ascendingly in the following order:
and < not
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
The following defined symbols remain to be analysed:
and, not
They will be analysed ascendingly in the following order:
and < not
Induction Base:
and(gen_or2_0(a), gen_or2_0(+(1, 0)))
Induction Step:
and(gen_or2_0(a), gen_or2_0(+(1, +(n4_0, 1)))) →RΩ(1)
or(and(gen_or2_0(a), hole_or1_0), and(gen_or2_0(a), gen_or2_0(+(1, n4_0)))) →IH
or(and(gen_or2_0(a), hole_or1_0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
and(gen_or2_0(a), gen_or2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
The following defined symbols remain to be analysed:
not
Induction Base:
not(gen_or2_0(+(1, 0)))
Induction Step:
not(gen_or2_0(+(1, +(n3887_0, 1)))) →RΩ(1)
and(not(hole_or1_0), not(gen_or2_0(+(1, n3887_0)))) →IH
and(not(hole_or1_0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
and(gen_or2_0(a), gen_or2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
not(gen_or2_0(+(1, n3887_0))) → *3_0, rt ∈ Ω(n38870)
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
No more defined symbols left to analyse.
Lemmas:
and(gen_or2_0(a), gen_or2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
not(gen_or2_0(+(1, n3887_0))) → *3_0, rt ∈ Ω(n38870)
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
No more defined symbols left to analyse.
Lemmas:
and(gen_or2_0(a), gen_or2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_or2_0(0) ⇔ hole_or1_0
gen_or2_0(+(x, 1)) ⇔ or(hole_or1_0, gen_or2_0(x))
No more defined symbols left to analyse.