(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → s(0)
f(s(0)) → s(s(0))
f(s(0)) → *(s(s(0)), f(0))
f(+(x, s(0))) → +(s(s(0)), f(x))
f(+(x, y)) → *(f(x), f(y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(+(x, s(0))) →+ +(s(s(0)), f(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / +(x, s(0))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → s(0')
f(s(0')) → s(s(0'))
f(s(0')) → *'(s(s(0')), f(0'))
f(+'(x, s(0'))) → +'(s(s(0')), f(x))
f(+'(x, y)) → *'(f(x), f(y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0') → s(0')
f(s(0')) → s(s(0'))
f(s(0')) → *'(s(s(0')), f(0'))
f(+'(x, s(0'))) → +'(s(s(0')), f(x))
f(+'(x, y)) → *'(f(x), f(y))
Types:
f :: 0':s:*':+' → 0':s:*':+'
0' :: 0':s:*':+'
s :: 0':s:*':+' → 0':s:*':+'
*' :: 0':s:*':+' → 0':s:*':+' → 0':s:*':+'
+' :: 0':s:*':+' → 0':s:*':+' → 0':s:*':+'
hole_0':s:*':+'1_0 :: 0':s:*':+'
gen_0':s:*':+'2_0 :: Nat → 0':s:*':+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
s(
0'))
f(
s(
0')) →
*'(
s(
s(
0')),
f(
0'))
f(
+'(
x,
s(
0'))) →
+'(
s(
s(
0')),
f(
x))
f(
+'(
x,
y)) →
*'(
f(
x),
f(
y))
Types:
f :: 0':s:*':+' → 0':s:*':+'
0' :: 0':s:*':+'
s :: 0':s:*':+' → 0':s:*':+'
*' :: 0':s:*':+' → 0':s:*':+' → 0':s:*':+'
+' :: 0':s:*':+' → 0':s:*':+' → 0':s:*':+'
hole_0':s:*':+'1_0 :: 0':s:*':+'
gen_0':s:*':+'2_0 :: Nat → 0':s:*':+'
Generator Equations:
gen_0':s:*':+'2_0(0) ⇔ 0'
gen_0':s:*':+'2_0(+(x, 1)) ⇔ s(gen_0':s:*':+'2_0(x))
The following defined symbols remain to be analysed:
f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
0') →
s(
0')
f(
s(
0')) →
s(
s(
0'))
f(
s(
0')) →
*'(
s(
s(
0')),
f(
0'))
f(
+'(
x,
s(
0'))) →
+'(
s(
s(
0')),
f(
x))
f(
+'(
x,
y)) →
*'(
f(
x),
f(
y))
Types:
f :: 0':s:*':+' → 0':s:*':+'
0' :: 0':s:*':+'
s :: 0':s:*':+' → 0':s:*':+'
*' :: 0':s:*':+' → 0':s:*':+' → 0':s:*':+'
+' :: 0':s:*':+' → 0':s:*':+' → 0':s:*':+'
hole_0':s:*':+'1_0 :: 0':s:*':+'
gen_0':s:*':+'2_0 :: Nat → 0':s:*':+'
Generator Equations:
gen_0':s:*':+'2_0(0) ⇔ 0'
gen_0':s:*':+'2_0(+(x, 1)) ⇔ s(gen_0':s:*':+'2_0(x))
No more defined symbols left to analyse.