*** 1 Progress [(O(1),O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
*(x,*(y,z)) -> *(otimes(x,y),z)
*(x,oplus(y,z)) -> oplus(*(x,y),*(x,z))
*(+(x,y),z) -> oplus(*(x,z),*(y,z))
*(1(),y) -> y
Weak DP Rules:
Weak TRS Rules:
Signature:
{*/2} / {+/2,1/0,oplus/2,otimes/2}
Obligation:
Full
basic terms: {*}/{+,1,oplus,otimes}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(oplus) = {1,2}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(*) = 2*x1 + 2*x1*x2 + 2*x2
p(+) = 1 + x1 + x2
p(1) = 1
p(oplus) = 1 + x1 + x2
p(otimes) = 0
Following rules are strictly oriented:
*(x,oplus(y,z)) = 2 + 4*x + 2*x*y + 2*x*z + 2*y + 2*z
> 1 + 4*x + 2*x*y + 2*x*z + 2*y + 2*z
= oplus(*(x,y),*(x,z))
*(+(x,y),z) = 2 + 2*x + 2*x*z + 2*y + 2*y*z + 4*z
> 1 + 2*x + 2*x*z + 2*y + 2*y*z + 4*z
= oplus(*(x,z),*(y,z))
*(1(),y) = 2 + 4*y
> y
= y
Following rules are (at-least) weakly oriented:
*(x,*(y,z)) = 2*x + 4*x*y + 4*x*y*z + 4*x*z + 4*y + 4*y*z + 4*z
>= 2*z
= *(otimes(x,y),z)
*** 1.1 Progress [(O(1),O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
*(x,*(y,z)) -> *(otimes(x,y),z)
Weak DP Rules:
Weak TRS Rules:
*(x,oplus(y,z)) -> oplus(*(x,y),*(x,z))
*(+(x,y),z) -> oplus(*(x,z),*(y,z))
*(1(),y) -> y
Signature:
{*/2} / {+/2,1/0,oplus/2,otimes/2}
Obligation:
Full
basic terms: {*}/{+,1,oplus,otimes}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(oplus) = {1,2}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(*) = 1 + 2*x1 + 2*x1*x2 + 2*x2
p(+) = 1 + x1 + x2
p(1) = 1
p(oplus) = 1 + x1 + x2
p(otimes) = x1
Following rules are strictly oriented:
*(x,*(y,z)) = 3 + 4*x + 4*x*y + 4*x*y*z + 4*x*z + 4*y + 4*y*z + 4*z
> 1 + 2*x + 2*x*z + 2*z
= *(otimes(x,y),z)
Following rules are (at-least) weakly oriented:
*(x,oplus(y,z)) = 3 + 4*x + 2*x*y + 2*x*z + 2*y + 2*z
>= 3 + 4*x + 2*x*y + 2*x*z + 2*y + 2*z
= oplus(*(x,y),*(x,z))
*(+(x,y),z) = 3 + 2*x + 2*x*z + 2*y + 2*y*z + 4*z
>= 3 + 2*x + 2*x*z + 2*y + 2*y*z + 4*z
= oplus(*(x,z),*(y,z))
*(1(),y) = 3 + 4*y
>= y
= y
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
*(x,*(y,z)) -> *(otimes(x,y),z)
*(x,oplus(y,z)) -> oplus(*(x,y),*(x,z))
*(+(x,y),z) -> oplus(*(x,z),*(y,z))
*(1(),y) -> y
Signature:
{*/2} / {+/2,1/0,oplus/2,otimes/2}
Obligation:
Full
basic terms: {*}/{+,1,oplus,otimes}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).