(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
*(*(x, y), z) → *(x, *(y, z))
*(+(x, y), z) → +(*(x, z), *(y, z))
*(x, +(y, f(z))) → *(g(x, z), +(y, y))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f(z))) → *'(g(x, z), +'(y, y))
S is empty.
Rewrite Strategy: FULL
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
f/0
g/0
g/1
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f)) → *'(g, +'(y, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f)) → *'(g, +'(y, y))
Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
*'
(8) Obligation:
TRS:
Rules:
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
*'(
+'(
x,
y),
z) →
+'(
*'(
x,
z),
*'(
y,
z))
*'(
x,
+'(
y,
f)) →
*'(
g,
+'(
y,
y))
Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g
Generator Equations:
gen_+':f:g2_0(0) ⇔ f
gen_+':f:g2_0(+(x, 1)) ⇔ +'(gen_+':f:g2_0(x), f)
The following defined symbols remain to be analysed:
*'
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_+':f:g2_0(
+(
1,
n4_0)),
gen_+':f:g2_0(
b)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
*'(gen_+':f:g2_0(+(1, 0)), gen_+':f:g2_0(b))
Induction Step:
*'(gen_+':f:g2_0(+(1, +(n4_0, 1))), gen_+':f:g2_0(b)) →RΩ(1)
+'(*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)), *'(f, gen_+':f:g2_0(b))) →IH
+'(*3_0, *'(f, gen_+':f:g2_0(b)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
*'(
+'(
x,
y),
z) →
+'(
*'(
x,
z),
*'(
y,
z))
*'(
x,
+'(
y,
f)) →
*'(
g,
+'(
y,
y))
Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g
Lemmas:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_+':f:g2_0(0) ⇔ f
gen_+':f:g2_0(+(x, 1)) ⇔ +'(gen_+':f:g2_0(x), f)
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
*'(
*'(
x,
y),
z) →
*'(
x,
*'(
y,
z))
*'(
+'(
x,
y),
z) →
+'(
*'(
x,
z),
*'(
y,
z))
*'(
x,
+'(
y,
f)) →
*'(
g,
+'(
y,
y))
Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g
Lemmas:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_+':f:g2_0(0) ⇔ f
gen_+':f:g2_0(+(x, 1)) ⇔ +'(gen_+':f:g2_0(x), f)
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)