(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, g(x)) → x
f(x, h(y)) → f(h(x), y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, h(y)) →+ f(h(x), y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y / h(y)].
The result substitution is [x / h(x)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, g(x)) → x
f(x, h(y)) → f(h(x), y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, g(x)) → x
f(x, h(y)) → f(h(x), y)
Types:
f :: g:h → g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x,
g(
x)) →
xf(
x,
h(
y)) →
f(
h(
x),
y)
Types:
f :: g:h → g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h
Generator Equations:
gen_g:h2_0(0) ⇔ hole_g:h1_0
gen_g:h2_0(+(x, 1)) ⇔ h(gen_g:h2_0(x))
The following defined symbols remain to be analysed:
f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
x,
g(
x)) →
xf(
x,
h(
y)) →
f(
h(
x),
y)
Types:
f :: g:h → g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h
Generator Equations:
gen_g:h2_0(0) ⇔ hole_g:h1_0
gen_g:h2_0(+(x, 1)) ⇔ h(gen_g:h2_0(x))
No more defined symbols left to analyse.