(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, g(x)) → x
f(x, h(y)) → f(h(x), y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, h(y)) →+ f(h(x), y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y / h(y)].
The result substitution is [x / h(x)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, g(x)) → x
f(x, h(y)) → f(h(x), y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, g(x)) → x
f(x, h(y)) → f(h(x), y)
Types:
f :: g:h → g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x,
g(
x)) →
xf(
x,
h(
y)) →
f(
h(
x),
y)
Types:
f :: g:h → g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h
Generator Equations:
gen_g:h2_0(0) ⇔ hole_g:h1_0
gen_g:h2_0(+(x, 1)) ⇔ h(gen_g:h2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_g:h2_0(
a),
gen_g:h2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
f(gen_g:h2_0(a), gen_g:h2_0(+(1, 0)))
Induction Step:
f(gen_g:h2_0(a), gen_g:h2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(h(gen_g:h2_0(a)), gen_g:h2_0(+(1, n4_0))) →IH
*3_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
x,
g(
x)) →
xf(
x,
h(
y)) →
f(
h(
x),
y)
Types:
f :: g:h → g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h
Lemmas:
f(gen_g:h2_0(a), gen_g:h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_g:h2_0(0) ⇔ hole_g:h1_0
gen_g:h2_0(+(x, 1)) ⇔ h(gen_g:h2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g:h2_0(a), gen_g:h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
x,
g(
x)) →
xf(
x,
h(
y)) →
f(
h(
x),
y)
Types:
f :: g:h → g:h → g:h
g :: g:h → g:h
h :: g:h → g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h
Lemmas:
f(gen_g:h2_0(a), gen_g:h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_g:h2_0(0) ⇔ hole_g:h1_0
gen_g:h2_0(+(x, 1)) ⇔ h(gen_g:h2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g:h2_0(a), gen_g:h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)