*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
b(u(x)) -> a(e(x))
c(u(x)) -> b(x)
d(x) -> e(u(x))
d(u(x)) -> c(x)
v(e(x)) -> x
Weak DP Rules:
Weak TRS Rules:
Signature:
{b/1,c/1,d/1,v/1} / {a/1,e/1,u/1}
Obligation:
Full
basic terms: {b,c,d,v}/{a,e,u}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
b(u(x)) -> a(e(x))
c(u(x)) -> b(x)
d(x) -> e(u(x))
d(u(x)) -> c(x)
v(e(x)) -> x
Weak DP Rules:
Weak TRS Rules:
Signature:
{b/1,c/1,d/1,v/1} / {a/1,e/1,u/1}
Obligation:
Innermost
basic terms: {b,c,d,v}/{a,e,u}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
b#(u(x)) -> c_1()
c#(u(x)) -> c_2(b#(x))
d#(x) -> c_3()
d#(u(x)) -> c_4(c#(x))
v#(e(x)) -> c_5()
Weak DPs
and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
b#(u(x)) -> c_1()
c#(u(x)) -> c_2(b#(x))
d#(x) -> c_3()
d#(u(x)) -> c_4(c#(x))
v#(e(x)) -> c_5()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
b(u(x)) -> a(e(x))
c(u(x)) -> b(x)
d(x) -> e(u(x))
d(u(x)) -> c(x)
v(e(x)) -> x
Signature:
{b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
Obligation:
Innermost
basic terms: {b#,c#,d#,v#}/{a,e,u}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
b#(u(x)) -> c_1()
c#(u(x)) -> c_2(b#(x))
d#(x) -> c_3()
d#(u(x)) -> c_4(c#(x))
v#(e(x)) -> c_5()
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
b#(u(x)) -> c_1()
c#(u(x)) -> c_2(b#(x))
d#(x) -> c_3()
d#(u(x)) -> c_4(c#(x))
v#(e(x)) -> c_5()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
Obligation:
Innermost
basic terms: {b#,c#,d#,v#}/{a,e,u}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:b#(u(x)) -> c_1()
2:S:c#(u(x)) -> c_2(b#(x))
-->_1 b#(u(x)) -> c_1():1
3:S:d#(x) -> c_3()
4:S:d#(u(x)) -> c_4(c#(x))
-->_1 c#(u(x)) -> c_2(b#(x)):2
5:S:v#(e(x)) -> c_5()
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
Obligation:
Innermost
basic terms: {b#,c#,d#,v#}/{a,e,u}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).