*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() cond(true(),y) -> y Weak DP Rules: Weak TRS Rules: Signature: {admit/2,cond/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0} Obligation: Full basic terms: {admit,cond}/{.,=,carry,nil,sum,true,w} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following weak dependency pairs: Strict DPs admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) Strict TRS Rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() cond(true(),y) -> y Weak DP Rules: Weak TRS Rules: Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} Obligation: Full basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) Strict TRS Rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() Weak DP Rules: Weak TRS Rules: Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} Obligation: Full basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3}. Here rules are labelled as follows: 1: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()) ,.(u ,.(v ,.(w() ,admit(carry(x,u,v),z)))))) 2: admit#(x,nil()) -> c_2() 3: cond#(true(),y) -> c_3(y) *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: cond#(true(),y) -> c_3(y) Strict TRS Rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() Weak DP Rules: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() Weak TRS Rules: Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} Obligation: Full basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(.) = {2}, uargs(cond) = {2}, uargs(cond#) = {2}, uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(.) = [1] x2 + [0] p(=) = [2] p(admit) = [0] p(carry) = [1] x3 + [0] p(cond) = [4] x1 + [1] x2 + [4] p(nil) = [1] p(sum) = [1] x2 + [1] p(true) = [0] p(w) = [0] p(admit#) = [4] p(cond#) = [1] x2 + [1] p(c_1) = [1] x1 + [3] p(c_2) = [0] p(c_3) = [1] x1 + [0] Following rules are strictly oriented: cond#(true(),y) = [1] y + [1] > [1] y + [0] = c_3(y) Following rules are (at-least) weakly oriented: admit#(x,.(u,.(v,.(w(),z)))) = [4] >= [4] = c_1(cond#(=(sum(x,u,v),w()) ,.(u ,.(v ,.(w() ,admit(carry(x,u,v),z)))))) admit#(x,nil()) = [4] >= [0] = c_2() admit(x,.(u,.(v,.(w(),z)))) = [0] >= [12] = cond(=(sum(x,u,v),w()) ,.(u ,.(v ,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) = [0] >= [1] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() Weak DP Rules: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) Weak TRS Rules: Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} Obligation: Full basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(.) = {2}, uargs(cond) = {2}, uargs(cond#) = {2}, uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(.) = [1] x1 + [1] x2 + [0] p(=) = [1] x1 + [0] p(admit) = [2] x2 + [0] p(carry) = [1] x1 + [1] x3 + [1] p(cond) = [1] x2 + [1] p(nil) = [4] p(sum) = [1] x1 + [1] x3 + [1] p(true) = [3] p(w) = [4] p(admit#) = [1] x1 + [2] x2 + [4] p(cond#) = [1] x1 + [1] x2 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] p(c_3) = [1] x1 + [3] Following rules are strictly oriented: admit(x,.(u,.(v,.(w(),z)))) = [2] u + [2] v + [2] z + [8] > [1] u + [1] v + [2] z + [5] = cond(=(sum(x,u,v),w()) ,.(u ,.(v ,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) = [8] > [4] = nil() Following rules are (at-least) weakly oriented: admit#(x,.(u,.(v,.(w(),z)))) = [2] u + [2] v + [1] x + [2] z + [12] >= [1] u + [2] v + [1] x + [2] z + [5] = c_1(cond#(=(sum(x,u,v),w()) ,.(u ,.(v ,.(w() ,admit(carry(x,u,v),z)))))) admit#(x,nil()) = [1] x + [12] >= [1] = c_2() cond#(true(),y) = [1] y + [3] >= [1] y + [3] = c_3(y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))) admit#(x,nil()) -> c_2() cond#(true(),y) -> c_3(y) Weak TRS Rules: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))) admit(x,nil()) -> nil() Signature: {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1} Obligation: Full basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).