*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) -> nil()
cond(true(),y) -> y
Weak DP Rules:
Weak TRS Rules:
Signature:
{admit/2,cond/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0}
Obligation:
Full
basic terms: {admit,cond}/{.,=,carry,nil,sum,true,w}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following weak dependency pairs:
Strict DPs
admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
admit#(x,nil()) -> c_2()
cond#(true(),y) -> c_3(y)
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
admit#(x,nil()) -> c_2()
cond#(true(),y) -> c_3(y)
Strict TRS Rules:
admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) -> nil()
cond(true(),y) -> y
Weak DP Rules:
Weak TRS Rules:
Signature:
{admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1}
Obligation:
Full
basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) -> nil()
admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
admit#(x,nil()) -> c_2()
cond#(true(),y) -> c_3(y)
*** 1.1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
admit#(x,nil()) -> c_2()
cond#(true(),y) -> c_3(y)
Strict TRS Rules:
admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) -> nil()
Weak DP Rules:
Weak TRS Rules:
Signature:
{admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1}
Obligation:
Full
basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,2}
by application of
Pre({1,2}) = {3}.
Here rules are labelled as follows:
1: admit#(x,.(u,.(v,.(w(),z)))) ->
c_1(cond#(=(sum(x,u,v),w())
,.(u
,.(v
,.(w()
,admit(carry(x,u,v),z))))))
2: admit#(x,nil()) -> c_2()
3: cond#(true(),y) -> c_3(y)
*** 1.1.1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
cond#(true(),y) -> c_3(y)
Strict TRS Rules:
admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) -> nil()
Weak DP Rules:
admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
admit#(x,nil()) -> c_2()
Weak TRS Rules:
Signature:
{admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1}
Obligation:
Full
basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w}
Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
Proof:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(.) = {2},
uargs(cond) = {2},
uargs(cond#) = {2},
uargs(c_1) = {1},
uargs(c_3) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(.) = [1] x2 + [0]
p(=) = [2]
p(admit) = [0]
p(carry) = [1] x3 + [0]
p(cond) = [4] x1 + [1] x2 + [4]
p(nil) = [1]
p(sum) = [1] x2 + [1]
p(true) = [0]
p(w) = [0]
p(admit#) = [4]
p(cond#) = [1] x2 + [1]
p(c_1) = [1] x1 + [3]
p(c_2) = [0]
p(c_3) = [1] x1 + [0]
Following rules are strictly oriented:
cond#(true(),y) = [1] y + [1]
> [1] y + [0]
= c_3(y)
Following rules are (at-least) weakly oriented:
admit#(x,.(u,.(v,.(w(),z)))) = [4]
>= [4]
= c_1(cond#(=(sum(x,u,v),w())
,.(u
,.(v
,.(w()
,admit(carry(x,u,v),z))))))
admit#(x,nil()) = [4]
>= [0]
= c_2()
admit(x,.(u,.(v,.(w(),z)))) = [0]
>= [12]
= cond(=(sum(x,u,v),w())
,.(u
,.(v
,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) = [0]
>= [1]
= nil()
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) -> nil()
Weak DP Rules:
admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
admit#(x,nil()) -> c_2()
cond#(true(),y) -> c_3(y)
Weak TRS Rules:
Signature:
{admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1}
Obligation:
Full
basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w}
Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
Proof:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(.) = {2},
uargs(cond) = {2},
uargs(cond#) = {2},
uargs(c_1) = {1},
uargs(c_3) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(.) = [1] x1 + [1] x2 + [0]
p(=) = [1] x1 + [0]
p(admit) = [2] x2 + [0]
p(carry) = [1] x1 + [1] x3 + [1]
p(cond) = [1] x2 + [1]
p(nil) = [4]
p(sum) = [1] x1 + [1] x3 + [1]
p(true) = [3]
p(w) = [4]
p(admit#) = [1] x1 + [2] x2 + [4]
p(cond#) = [1] x1 + [1] x2 + [0]
p(c_1) = [1] x1 + [0]
p(c_2) = [1]
p(c_3) = [1] x1 + [3]
Following rules are strictly oriented:
admit(x,.(u,.(v,.(w(),z)))) = [2] u + [2] v + [2] z + [8]
> [1] u + [1] v + [2] z + [5]
= cond(=(sum(x,u,v),w())
,.(u
,.(v
,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) = [8]
> [4]
= nil()
Following rules are (at-least) weakly oriented:
admit#(x,.(u,.(v,.(w(),z)))) = [2] u + [2] v + [1] x + [2] z + [12]
>= [1] u + [2] v + [1] x + [2] z + [5]
= c_1(cond#(=(sum(x,u,v),w())
,.(u
,.(v
,.(w()
,admit(carry(x,u,v),z))))))
admit#(x,nil()) = [1] x + [12]
>= [1]
= c_2()
cond#(true(),y) = [1] y + [3]
>= [1] y + [3]
= c_3(y)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
admit#(x,nil()) -> c_2()
cond#(true(),y) -> c_3(y)
Weak TRS Rules:
admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
admit(x,nil()) -> nil()
Signature:
{admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/1}
Obligation:
Full
basic terms: {admit#,cond#}/{.,=,carry,nil,sum,true,w}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).