We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { ++(x, nil()) -> x , ++(++(x, y), z) -> ++(x, ++(y, z)) , ++(nil(), y) -> y , ++(.(x, y), z) -> .(x, ++(y, z)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 1. The enriched problem is compatible with the following automaton. { ++_0(2, 2) -> 1 , ++_0(2, 3) -> 1 , ++_0(3, 2) -> 1 , ++_0(3, 3) -> 1 , ++_1(2, 2) -> 4 , ++_1(2, 3) -> 4 , ++_1(3, 2) -> 4 , ++_1(3, 3) -> 4 , nil_0() -> 1 , nil_0() -> 2 , nil_0() -> 4 , ._0(2, 2) -> 1 , ._0(2, 2) -> 3 , ._0(2, 2) -> 4 , ._0(2, 3) -> 1 , ._0(2, 3) -> 3 , ._0(2, 3) -> 4 , ._0(3, 2) -> 1 , ._0(3, 2) -> 3 , ._0(3, 2) -> 4 , ._0(3, 3) -> 1 , ._0(3, 3) -> 3 , ._0(3, 3) -> 4 , ._1(2, 4) -> 1 , ._1(2, 4) -> 4 , ._1(3, 4) -> 1 , ._1(3, 4) -> 4 } Hurray, we answered YES(?,O(n^1))