*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
+(x,0()) -> x
+(x,s(y)) -> s(+(x,y))
+(s(x),y) -> s(+(x,y))
not(false()) -> true()
not(true()) -> false()
odd(0()) -> false()
odd(s(x)) -> not(odd(x))
Weak DP Rules:
Weak TRS Rules:
Signature:
{+/2,not/1,odd/1} / {0/0,false/0,s/1,true/0}
Obligation:
Full
basic terms: {+,not,odd}/{0,false,s,true}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
+(x,0()) -> x
+(x,s(y)) -> s(+(x,y))
+(s(x),y) -> s(+(x,y))
not(false()) -> true()
not(true()) -> false()
odd(0()) -> false()
odd(s(x)) -> not(odd(x))
Weak DP Rules:
Weak TRS Rules:
Signature:
{+/2,not/1,odd/1} / {0/0,false/0,s/1,true/0}
Obligation:
Innermost
basic terms: {+,not,odd}/{0,false,s,true}
Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
+_0(2,2) -> 1
+_1(2,2) -> 3
0_0() -> 1
0_0() -> 2
0_0() -> 3
false_0() -> 1
false_0() -> 2
false_0() -> 3
false_1() -> 1
false_1() -> 4
false_2() -> 1
false_2() -> 4
not_0(2) -> 1
not_1(4) -> 1
not_1(4) -> 4
odd_0(2) -> 1
odd_1(2) -> 4
s_0(2) -> 1
s_0(2) -> 2
s_0(2) -> 3
s_1(3) -> 1
s_1(3) -> 3
true_0() -> 1
true_0() -> 2
true_0() -> 3
true_1() -> 1
true_2() -> 1
true_2() -> 4
2 -> 1
2 -> 3
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
+(x,0()) -> x
+(x,s(y)) -> s(+(x,y))
+(s(x),y) -> s(+(x,y))
not(false()) -> true()
not(true()) -> false()
odd(0()) -> false()
odd(s(x)) -> not(odd(x))
Signature:
{+/2,not/1,odd/1} / {0/0,false/0,s/1,true/0}
Obligation:
Innermost
basic terms: {+,not,odd}/{0,false,s,true}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).