*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) Weak DP Rules: Weak TRS Rules: Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} Obligation: Full basic terms: {divp,prime,prime1}/{0,=,and,false,not,rem,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(not) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(=) = [0] p(and) = [1] x1 + [1] x2 + [2] p(divp) = [0] p(false) = [0] p(not) = [1] x1 + [1] p(prime) = [1] x1 + [4] p(prime1) = [1] x2 + [13] p(rem) = [1] x2 + [0] p(s) = [1] x1 + [4] p(true) = [0] Following rules are strictly oriented: prime(0()) = [4] > [0] = false() prime(s(0())) = [8] > [0] = false() prime1(x,0()) = [13] > [0] = false() prime1(x,s(0())) = [17] > [0] = true() prime1(x,s(s(y))) = [1] y + [21] > [1] y + [20] = and(not(divp(s(s(y)),x)) ,prime1(x,s(y))) Following rules are (at-least) weakly oriented: divp(x,y) = [0] >= [0] = =(rem(x,y),0()) prime(s(s(x))) = [1] x + [12] >= [1] x + [17] = prime1(s(s(x)),s(x)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: divp(x,y) -> =(rem(x,y),0()) prime(s(s(x))) -> prime1(s(s(x)),s(x)) Weak DP Rules: Weak TRS Rules: prime(0()) -> false() prime(s(0())) -> false() prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} Obligation: Full basic terms: {divp,prime,prime1}/{0,=,and,false,not,rem,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(not) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [2] p(=) = [0] p(and) = [1] x1 + [1] x2 + [0] p(divp) = [8] p(false) = [2] p(not) = [1] x1 + [0] p(prime) = [8] x1 + [0] p(prime1) = [8] x2 + [4] p(rem) = [1] x2 + [1] p(s) = [1] x1 + [1] p(true) = [2] Following rules are strictly oriented: divp(x,y) = [8] > [0] = =(rem(x,y),0()) prime(s(s(x))) = [8] x + [16] > [8] x + [12] = prime1(s(s(x)),s(x)) Following rules are (at-least) weakly oriented: prime(0()) = [16] >= [2] = false() prime(s(0())) = [24] >= [2] = false() prime1(x,0()) = [20] >= [2] = false() prime1(x,s(0())) = [28] >= [2] = true() prime1(x,s(s(y))) = [8] y + [20] >= [8] y + [20] = and(not(divp(s(s(y)),x)) ,prime1(x,s(y))) *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} Obligation: Full basic terms: {divp,prime,prime1}/{0,=,and,false,not,rem,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).