*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
divp(x,y) -> =(rem(x,y),0())
prime(0()) -> false()
prime(s(0())) -> false()
prime(s(s(x))) -> prime1(s(s(x)),s(x))
prime1(x,0()) -> false()
prime1(x,s(0())) -> true()
prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y)))
Weak DP Rules:
Weak TRS Rules:
Signature:
{divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0}
Obligation:
Full
basic terms: {divp,prime,prime1}/{0,=,and,false,not,rem,s,true}
Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
Proof:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(and) = {1,2},
uargs(not) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(0) = [0]
p(=) = [0]
p(and) = [1] x1 + [1] x2 + [2]
p(divp) = [0]
p(false) = [0]
p(not) = [1] x1 + [1]
p(prime) = [1] x1 + [4]
p(prime1) = [1] x2 + [13]
p(rem) = [1] x2 + [0]
p(s) = [1] x1 + [4]
p(true) = [0]
Following rules are strictly oriented:
prime(0()) = [4]
> [0]
= false()
prime(s(0())) = [8]
> [0]
= false()
prime1(x,0()) = [13]
> [0]
= false()
prime1(x,s(0())) = [17]
> [0]
= true()
prime1(x,s(s(y))) = [1] y + [21]
> [1] y + [20]
= and(not(divp(s(s(y)),x))
,prime1(x,s(y)))
Following rules are (at-least) weakly oriented:
divp(x,y) = [0]
>= [0]
= =(rem(x,y),0())
prime(s(s(x))) = [1] x + [12]
>= [1] x + [17]
= prime1(s(s(x)),s(x))
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
divp(x,y) -> =(rem(x,y),0())
prime(s(s(x))) -> prime1(s(s(x)),s(x))
Weak DP Rules:
Weak TRS Rules:
prime(0()) -> false()
prime(s(0())) -> false()
prime1(x,0()) -> false()
prime1(x,s(0())) -> true()
prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y)))
Signature:
{divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0}
Obligation:
Full
basic terms: {divp,prime,prime1}/{0,=,and,false,not,rem,s,true}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(and) = {1,2},
uargs(not) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(0) = [2]
p(=) = [0]
p(and) = [1] x1 + [1] x2 + [0]
p(divp) = [8]
p(false) = [2]
p(not) = [1] x1 + [0]
p(prime) = [8] x1 + [0]
p(prime1) = [8] x2 + [4]
p(rem) = [1] x2 + [1]
p(s) = [1] x1 + [1]
p(true) = [2]
Following rules are strictly oriented:
divp(x,y) = [8]
> [0]
= =(rem(x,y),0())
prime(s(s(x))) = [8] x + [16]
> [8] x + [12]
= prime1(s(s(x)),s(x))
Following rules are (at-least) weakly oriented:
prime(0()) = [16]
>= [2]
= false()
prime(s(0())) = [24]
>= [2]
= false()
prime1(x,0()) = [20]
>= [2]
= false()
prime1(x,s(0())) = [28]
>= [2]
= true()
prime1(x,s(s(y))) = [8] y + [20]
>= [8] y + [20]
= and(not(divp(s(s(y)),x))
,prime1(x,s(y)))
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
divp(x,y) -> =(rem(x,y),0())
prime(0()) -> false()
prime(s(0())) -> false()
prime(s(s(x))) -> prime1(s(s(x)),s(x))
prime1(x,0()) -> false()
prime1(x,s(0())) -> true()
prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y)))
Signature:
{divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0}
Obligation:
Full
basic terms: {divp,prime,prime1}/{0,=,and,false,not,rem,s,true}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).