(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
prime(0) → false
prime(s(0)) → false
prime(s(s(x))) → prime1(s(s(x)), s(x))
prime1(x, 0) → false
prime1(x, s(0)) → true
prime1(x, s(s(y))) → and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) → =(rem(x, y), 0)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
prime1(x, s(s(y))) →+ and(not(divp(s(s(y)), x)), prime1(x, s(y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)