0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 799 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 868 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 LowerBoundsProof (⇔, 0 ms)
↳14 BOUNDS(n^1, INF)
↳15 typed CpxTrs
↳16 LowerBoundsProof (⇔, 0 ms)
↳17 BOUNDS(n^1, INF)
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^1, INF)
sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
sum(0') → 0'
sum(s(x)) → +'(sum(x), s(x))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
They will be analysed ascendingly in the following order:
+' < sum
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
+', sum
They will be analysed ascendingly in the following order:
+' < sum
Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
sum
Induction Base:
sum(gen_0':s2_0(+(1, 0)))
Induction Step:
sum(gen_0':s2_0(+(1, +(n403_0, 1)))) →RΩ(1)
+'(sum(gen_0':s2_0(+(1, n403_0))), s(gen_0':s2_0(+(1, n403_0)))) →IH
+'(*3_0, s(gen_0':s2_0(+(1, n403_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
sum(gen_0':s2_0(+(1, n403_0))) → *3_0, rt ∈ Ω(n4030)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
sum(gen_0':s2_0(+(1, n403_0))) → *3_0, rt ∈ Ω(n4030)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.