(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
minus(minus(x)) → x
minus(h(x)) → h(minus(x))
minus(f(x, y)) → f(minus(y), minus(x))
Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus
(6) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
h(
x)) →
h(
minus(
x))
minus(
f(
x,
y)) →
f(
minus(
y),
minus(
x))
Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f
Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))
The following defined symbols remain to be analysed:
minus
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_h:f2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
minus(gen_h:f2_0(+(1, 0)))
Induction Step:
minus(gen_h:f2_0(+(1, +(n4_0, 1)))) →RΩ(1)
h(minus(gen_h:f2_0(+(1, n4_0)))) →IH
h(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
h(
x)) →
h(
minus(
x))
minus(
f(
x,
y)) →
f(
minus(
y),
minus(
x))
Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f
Lemmas:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
TRS:
Rules:
minus(
minus(
x)) →
xminus(
h(
x)) →
h(
minus(
x))
minus(
f(
x,
y)) →
f(
minus(
y),
minus(
x))
Types:
minus :: h:f → h:f
h :: h:f → h:f
f :: h:f → h:f → h:f
hole_h:f1_0 :: h:f
gen_h:f2_0 :: Nat → h:f
Lemmas:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_h:f2_0(0) ⇔ hole_h:f1_0
gen_h:f2_0(+(x, 1)) ⇔ h(gen_h:f2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_h:f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)