(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
+(f(x), f(y)) → f(+(x, y))
+(f(x), +(f(y), z)) → +(f(+(x, y)), z)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(f(x), f(y)) → f(+'(x, y))
+'(f(x), +'(f(y), z)) → +'(f(+'(x, y)), z)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
+'(+'(x, y), z) → +'(x, +'(y, z))
+'(f(x), f(y)) → f(+'(x, y))
+'(f(x), +'(f(y), z)) → +'(f(+'(x, y)), z)
Types:
+' :: f → f → f
f :: f → f
hole_f1_0 :: f
gen_f2_0 :: Nat → f
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+'
(6) Obligation:
TRS:
Rules:
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
+'(
f(
x),
f(
y)) →
f(
+'(
x,
y))
+'(
f(
x),
+'(
f(
y),
z)) →
+'(
f(
+'(
x,
y)),
z)
Types:
+' :: f → f → f
f :: f → f
hole_f1_0 :: f
gen_f2_0 :: Nat → f
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
The following defined symbols remain to be analysed:
+'
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_f2_0(
+(
1,
n4_0)),
gen_f2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
+'(gen_f2_0(+(1, 0)), gen_f2_0(+(1, 0)))
Induction Step:
+'(gen_f2_0(+(1, +(n4_0, 1))), gen_f2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(+'(gen_f2_0(+(1, n4_0)), gen_f2_0(+(1, n4_0)))) →IH
f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
+'(
f(
x),
f(
y)) →
f(
+'(
x,
y))
+'(
f(
x),
+'(
f(
y),
z)) →
+'(
f(
+'(
x,
y)),
z)
Types:
+' :: f → f → f
f :: f → f
hole_f1_0 :: f
gen_f2_0 :: Nat → f
Lemmas:
+'(gen_f2_0(+(1, n4_0)), gen_f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_f2_0(+(1, n4_0)), gen_f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
TRS:
Rules:
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
+'(
f(
x),
f(
y)) →
f(
+'(
x,
y))
+'(
f(
x),
+'(
f(
y),
z)) →
+'(
f(
+'(
x,
y)),
z)
Types:
+' :: f → f → f
f :: f → f
hole_f1_0 :: f
gen_f2_0 :: Nat → f
Lemmas:
+'(gen_f2_0(+(1, n4_0)), gen_f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_f2_0(+(1, n4_0)), gen_f2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)