*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(c(X,s(Y))) -> f(c(s(X),Y)) g(c(s(X),Y)) -> f(c(X,s(Y))) Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/1} / {c/2,s/1} Obligation: Full basic terms: {f,g}/{c,s} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(c(X,s(Y))) -> f(c(s(X),Y)) g(c(s(X),Y)) -> f(c(X,s(Y))) Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/1} / {c/2,s/1} Obligation: Innermost basic terms: {f,g}/{c,s} Applied Processor: Bounds {initialAutomaton = perSymbol, enrichment = match} Proof: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. c_0(1,1) -> 1 c_0(1,4) -> 1 c_0(4,1) -> 1 c_0(4,4) -> 1 c_1(1,6) -> 7 c_1(4,6) -> 7 c_1(6,1) -> 5 c_1(6,4) -> 5 c_1(10,1) -> 7 c_1(10,4) -> 7 c_2(9,1) -> 8 c_2(9,4) -> 8 c_2(9,6) -> 8 f_0(1) -> 2 f_0(4) -> 2 f_1(5) -> 2 f_1(7) -> 3 f_2(8) -> 3 g_0(1) -> 3 g_0(4) -> 3 s_0(1) -> 4 s_0(4) -> 4 s_1(1) -> 6 s_1(4) -> 6 s_1(6) -> 6 s_1(9) -> 10 s_1(10) -> 10 s_2(1) -> 9 s_2(4) -> 9 s_2(9) -> 9 *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(c(X,s(Y))) -> f(c(s(X),Y)) g(c(s(X),Y)) -> f(c(X,s(Y))) Signature: {f/1,g/1} / {c/2,s/1} Obligation: Innermost basic terms: {f,g}/{c,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).