*** 1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
dx(X) -> one()
dx(a()) -> zero()
dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
Weak DP Rules:
Weak TRS Rules:
Signature:
{dx/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0}
Obligation:
Full
basic terms: {dx}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
DependencyPairs {dpKind_ = WIDP}
Proof:
We add the following weak dependency pairs:
Strict DPs
dx#(X) -> c_1()
dx#(a()) -> c_2()
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(X) -> c_1()
dx#(a()) -> c_2()
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
dx(X) -> one()
dx(a()) -> zero()
dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two()))))
dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA))))
dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA)
dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA))
dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA)))
Weak DP Rules:
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
dx#(X) -> c_1()
dx#(a()) -> c_2()
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
*** 1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(X) -> c_1()
dx#(a()) -> c_2()
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
Succeeding
Proof:
()
*** 1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(X) -> c_1()
dx#(a()) -> c_2()
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,2}
by application of
Pre({1,2}) = {3,4,5,6,7,8,9}.
Here rules are labelled as follows:
1: dx#(X) -> c_1()
2: dx#(a()) -> c_2()
3: dx#(div(ALPHA,BETA)) ->
c_3(dx#(ALPHA)
,BETA
,ALPHA
,dx#(BETA)
,BETA)
4: dx#(exp(ALPHA,BETA)) -> c_4(BETA
,ALPHA
,BETA
,dx#(ALPHA)
,ALPHA
,BETA
,ALPHA
,dx#(BETA))
5: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)
,ALPHA)
6: dx#(minus(ALPHA,BETA)) ->
c_6(dx#(ALPHA),dx#(BETA))
7: dx#(neg(ALPHA)) ->
c_7(dx#(ALPHA))
8: dx#(plus(ALPHA,BETA)) ->
c_8(dx#(ALPHA),dx#(BETA))
9: dx#(times(ALPHA,BETA)) ->
c_9(BETA
,dx#(ALPHA)
,ALPHA
,dx#(BETA))
*** 1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
dx#(X) -> c_1()
dx#(a()) -> c_2()
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
-->_5 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_4 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_3 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_5 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_4 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_3 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_5 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_4 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_3 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_5 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_4 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_3 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_5 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_4 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_3 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_5 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_4 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_3 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_5 dx#(a()) -> c_2():9
-->_4 dx#(a()) -> c_2():9
-->_3 dx#(a()) -> c_2():9
-->_2 dx#(a()) -> c_2():9
-->_1 dx#(a()) -> c_2():9
-->_5 dx#(X) -> c_1():8
-->_4 dx#(X) -> c_1():8
-->_3 dx#(X) -> c_1():8
-->_2 dx#(X) -> c_1():8
-->_1 dx#(X) -> c_1():8
-->_5 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_4 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_3 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
2:S:dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
-->_8 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_7 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_6 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_5 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_4 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_3 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_8 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_7 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_6 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_5 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_4 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_3 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_8 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_7 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_6 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_5 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_4 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_3 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_8 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_7 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_6 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_5 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_4 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_3 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_8 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_7 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_6 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_5 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_4 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_3 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_8 dx#(a()) -> c_2():9
-->_7 dx#(a()) -> c_2():9
-->_6 dx#(a()) -> c_2():9
-->_5 dx#(a()) -> c_2():9
-->_4 dx#(a()) -> c_2():9
-->_3 dx#(a()) -> c_2():9
-->_2 dx#(a()) -> c_2():9
-->_1 dx#(a()) -> c_2():9
-->_8 dx#(X) -> c_1():8
-->_7 dx#(X) -> c_1():8
-->_6 dx#(X) -> c_1():8
-->_5 dx#(X) -> c_1():8
-->_4 dx#(X) -> c_1():8
-->_3 dx#(X) -> c_1():8
-->_2 dx#(X) -> c_1():8
-->_1 dx#(X) -> c_1():8
-->_8 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_7 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_6 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_5 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_4 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_3 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_8 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_7 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_6 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_5 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_4 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_3 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
3:S:dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(a()) -> c_2():9
-->_1 dx#(a()) -> c_2():9
-->_2 dx#(X) -> c_1():8
-->_1 dx#(X) -> c_1():8
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
4:S:dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(a()) -> c_2():9
-->_1 dx#(a()) -> c_2():9
-->_2 dx#(X) -> c_1():8
-->_1 dx#(X) -> c_1():8
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
5:S:dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(a()) -> c_2():9
-->_1 dx#(X) -> c_1():8
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
6:S:dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(a()) -> c_2():9
-->_1 dx#(a()) -> c_2():9
-->_2 dx#(X) -> c_1():8
-->_1 dx#(X) -> c_1():8
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
7:S:dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
-->_4 dx#(a()) -> c_2():9
-->_3 dx#(a()) -> c_2():9
-->_2 dx#(a()) -> c_2():9
-->_1 dx#(a()) -> c_2():9
-->_4 dx#(X) -> c_1():8
-->_3 dx#(X) -> c_1():8
-->_2 dx#(X) -> c_1():8
-->_1 dx#(X) -> c_1():8
-->_4 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_3 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_4 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_3 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_4 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_3 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_4 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_3 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_4 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_3 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_4 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_3 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_4 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_3 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
8:W:dx#(X) -> c_1()
9:W:dx#(a()) -> c_2()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
8: dx#(X) -> c_1()
9: dx#(a()) -> c_2()
*** 1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
2: dx#(exp(ALPHA,BETA)) -> c_4(BETA
,ALPHA
,BETA
,dx#(ALPHA)
,ALPHA
,BETA
,ALPHA
,dx#(BETA))
3: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)
,ALPHA)
6: dx#(plus(ALPHA,BETA)) ->
c_8(dx#(ALPHA),dx#(BETA))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_3) = {1,4},
uargs(c_4) = {4,8},
uargs(c_5) = {1},
uargs(c_6) = {1,2},
uargs(c_7) = {1},
uargs(c_8) = {1,2},
uargs(c_9) = {2,4}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(a) = [1]
p(div) = [1] x1 + [1] x2 + [0]
p(dx) = [2] x1 + [1]
p(exp) = [1] x1 + [1] x2 + [2]
p(ln) = [1] x1 + [1]
p(minus) = [1] x1 + [1] x2 + [0]
p(neg) = [1] x1 + [0]
p(one) = [1]
p(plus) = [1] x1 + [1] x2 + [2]
p(times) = [1] x1 + [1] x2 + [0]
p(two) = [1]
p(zero) = [1]
p(dx#) = [8] x1 + [0]
p(c_1) = [0]
p(c_2) = [2]
p(c_3) = [1] x1 + [1] x4 + [0]
p(c_4) = [1] x4 + [1] x8 + [14]
p(c_5) = [1] x1 + [6]
p(c_6) = [1] x1 + [1] x2 + [0]
p(c_7) = [1] x1 + [0]
p(c_8) = [1] x1 + [1] x2 + [11]
p(c_9) = [1] x2 + [1] x4 + [0]
Following rules are strictly oriented:
dx#(exp(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16]
> [8] ALPHA + [8] BETA + [14]
= c_4(BETA
,ALPHA
,BETA
,dx#(ALPHA)
,ALPHA
,BETA
,ALPHA
,dx#(BETA))
dx#(ln(ALPHA)) = [8] ALPHA + [8]
> [8] ALPHA + [6]
= c_5(dx#(ALPHA),ALPHA)
dx#(plus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16]
> [8] ALPHA + [8] BETA + [11]
= c_8(dx#(ALPHA),dx#(BETA))
Following rules are (at-least) weakly oriented:
dx#(div(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0]
>= [8] ALPHA + [8] BETA + [0]
= c_3(dx#(ALPHA)
,BETA
,ALPHA
,dx#(BETA)
,BETA)
dx#(minus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0]
>= [8] ALPHA + [8] BETA + [0]
= c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) = [8] ALPHA + [0]
>= [8] ALPHA + [0]
= c_7(dx#(ALPHA))
dx#(times(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0]
>= [8] ALPHA + [8] BETA + [0]
= c_9(BETA
,dx#(ALPHA)
,ALPHA
,dx#(BETA))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
2: dx#(minus(ALPHA,BETA)) ->
c_6(dx#(ALPHA),dx#(BETA))
3: dx#(neg(ALPHA)) ->
c_7(dx#(ALPHA))
4: dx#(times(ALPHA,BETA)) ->
c_9(BETA
,dx#(ALPHA)
,ALPHA
,dx#(BETA))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Strict TRS Rules:
Weak DP Rules:
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_3) = {1,4},
uargs(c_4) = {4,8},
uargs(c_5) = {1},
uargs(c_6) = {1,2},
uargs(c_7) = {1},
uargs(c_8) = {1,2},
uargs(c_9) = {2,4}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(a) = [2]
p(div) = [1] x1 + [1] x2 + [1]
p(dx) = [1]
p(exp) = [1] x1 + [1] x2 + [1]
p(ln) = [1] x1 + [0]
p(minus) = [1] x1 + [1] x2 + [2]
p(neg) = [1] x1 + [1]
p(one) = [1]
p(plus) = [1] x1 + [1] x2 + [2]
p(times) = [1] x1 + [1] x2 + [3]
p(two) = [2]
p(zero) = [1]
p(dx#) = [8] x1 + [0]
p(c_1) = [0]
p(c_2) = [2]
p(c_3) = [1] x1 + [1] x4 + [8]
p(c_4) = [1] x4 + [1] x8 + [8]
p(c_5) = [1] x1 + [0]
p(c_6) = [1] x1 + [1] x2 + [12]
p(c_7) = [1] x1 + [5]
p(c_8) = [1] x1 + [1] x2 + [12]
p(c_9) = [1] x2 + [1] x4 + [12]
Following rules are strictly oriented:
dx#(minus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16]
> [8] ALPHA + [8] BETA + [12]
= c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) = [8] ALPHA + [8]
> [8] ALPHA + [5]
= c_7(dx#(ALPHA))
dx#(times(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [24]
> [8] ALPHA + [8] BETA + [12]
= c_9(BETA
,dx#(ALPHA)
,ALPHA
,dx#(BETA))
Following rules are (at-least) weakly oriented:
dx#(div(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [8]
>= [8] ALPHA + [8] BETA + [8]
= c_3(dx#(ALPHA)
,BETA
,ALPHA
,dx#(BETA)
,BETA)
dx#(exp(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [8]
>= [8] ALPHA + [8] BETA + [8]
= c_4(BETA
,ALPHA
,BETA
,dx#(ALPHA)
,ALPHA
,BETA
,ALPHA
,dx#(BETA))
dx#(ln(ALPHA)) = [8] ALPHA + [0]
>= [8] ALPHA + [0]
= c_5(dx#(ALPHA),ALPHA)
dx#(plus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16]
>= [8] ALPHA + [8] BETA + [12]
= c_8(dx#(ALPHA),dx#(BETA))
*** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
Strict TRS Rules:
Weak DP Rules:
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
Strict TRS Rules:
Weak DP Rules:
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: dx#(div(ALPHA,BETA)) ->
c_3(dx#(ALPHA)
,BETA
,ALPHA
,dx#(BETA)
,BETA)
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
Strict TRS Rules:
Weak DP Rules:
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_3) = {1,4},
uargs(c_4) = {4,8},
uargs(c_5) = {1},
uargs(c_6) = {1,2},
uargs(c_7) = {1},
uargs(c_8) = {1,2},
uargs(c_9) = {2,4}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(a) = [2]
p(div) = [1] x1 + [1] x2 + [2]
p(dx) = [4] x1 + [1]
p(exp) = [1] x1 + [1] x2 + [0]
p(ln) = [1] x1 + [2]
p(minus) = [1] x1 + [1] x2 + [2]
p(neg) = [1] x1 + [1]
p(one) = [1]
p(plus) = [1] x1 + [1] x2 + [0]
p(times) = [1] x1 + [1] x2 + [0]
p(two) = [1]
p(zero) = [1]
p(dx#) = [8] x1 + [0]
p(c_1) = [1]
p(c_2) = [1]
p(c_3) = [1] x1 + [1] x4 + [13]
p(c_4) = [1] x4 + [1] x8 + [0]
p(c_5) = [1] x1 + [9]
p(c_6) = [1] x1 + [1] x2 + [13]
p(c_7) = [1] x1 + [0]
p(c_8) = [1] x1 + [1] x2 + [0]
p(c_9) = [1] x2 + [1] x4 + [0]
Following rules are strictly oriented:
dx#(div(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16]
> [8] ALPHA + [8] BETA + [13]
= c_3(dx#(ALPHA)
,BETA
,ALPHA
,dx#(BETA)
,BETA)
Following rules are (at-least) weakly oriented:
dx#(exp(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0]
>= [8] ALPHA + [8] BETA + [0]
= c_4(BETA
,ALPHA
,BETA
,dx#(ALPHA)
,ALPHA
,BETA
,ALPHA
,dx#(BETA))
dx#(ln(ALPHA)) = [8] ALPHA + [16]
>= [8] ALPHA + [9]
= c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [16]
>= [8] ALPHA + [8] BETA + [13]
= c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) = [8] ALPHA + [8]
>= [8] ALPHA + [0]
= c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0]
>= [8] ALPHA + [8] BETA + [0]
= c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) = [8] ALPHA + [8] BETA + [0]
>= [8] ALPHA + [8] BETA + [0]
= c_9(BETA
,dx#(ALPHA)
,ALPHA
,dx#(BETA))
*** 1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2.2.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA)
-->_5 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_4 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_3 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_5 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_4 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_3 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_5 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_4 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_3 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_5 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_4 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_3 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_5 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_4 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_3 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_5 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_4 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_3 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_5 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_4 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_3 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
2:W:dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA))
-->_8 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_7 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_6 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_5 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_4 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_3 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_8 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_7 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_6 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_5 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_4 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_3 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_8 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_7 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_6 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_5 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_4 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_3 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_8 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_7 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_6 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_5 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_4 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_3 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_8 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_7 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_6 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_5 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_4 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_3 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_8 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_7 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_6 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_5 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_4 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_3 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_8 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_7 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_6 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_5 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_4 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_3 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
3:W:dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA)
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
4:W:dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA))
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
5:W:dx#(neg(ALPHA)) -> c_7(dx#(ALPHA))
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
6:W:dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA))
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
7:W:dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA))
-->_4 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_3 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_2 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_1 dx#(times(ALPHA,BETA)) -> c_9(BETA,dx#(ALPHA),ALPHA,dx#(BETA)):7
-->_4 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_3 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_2 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_1 dx#(plus(ALPHA,BETA)) -> c_8(dx#(ALPHA),dx#(BETA)):6
-->_4 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_3 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_2 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_1 dx#(neg(ALPHA)) -> c_7(dx#(ALPHA)):5
-->_4 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_3 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_2 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_1 dx#(minus(ALPHA,BETA)) -> c_6(dx#(ALPHA),dx#(BETA)):4
-->_4 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_3 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_2 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_1 dx#(ln(ALPHA)) -> c_5(dx#(ALPHA),ALPHA):3
-->_4 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_3 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_2 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_1 dx#(exp(ALPHA,BETA)) -> c_4(BETA,ALPHA,BETA,dx#(ALPHA),ALPHA,BETA,ALPHA,dx#(BETA)):2
-->_4 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_3 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_2 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
-->_1 dx#(div(ALPHA,BETA)) -> c_3(dx#(ALPHA),BETA,ALPHA,dx#(BETA),BETA):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: dx#(div(ALPHA,BETA)) ->
c_3(dx#(ALPHA)
,BETA
,ALPHA
,dx#(BETA)
,BETA)
7: dx#(times(ALPHA,BETA)) ->
c_9(BETA
,dx#(ALPHA)
,ALPHA
,dx#(BETA))
6: dx#(plus(ALPHA,BETA)) ->
c_8(dx#(ALPHA),dx#(BETA))
5: dx#(neg(ALPHA)) ->
c_7(dx#(ALPHA))
4: dx#(minus(ALPHA,BETA)) ->
c_6(dx#(ALPHA),dx#(BETA))
3: dx#(ln(ALPHA)) -> c_5(dx#(ALPHA)
,ALPHA)
2: dx#(exp(ALPHA,BETA)) -> c_4(BETA
,ALPHA
,BETA
,dx#(ALPHA)
,ALPHA
,BETA
,ALPHA
,dx#(BETA))
*** 1.1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{dx/1,dx#/1} / {a/0,div/2,exp/2,ln/1,minus/2,neg/1,one/0,plus/2,times/2,two/0,zero/0,c_1/0,c_2/0,c_3/5,c_4/8,c_5/2,c_6/2,c_7/1,c_8/2,c_9/4}
Obligation:
Full
basic terms: {dx#}/{a,div,exp,ln,minus,neg,one,plus,times,two,zero}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).