We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { dx(X) -> one()
  , dx(a()) -> zero()
  , dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
  , dx(times(ALPHA, BETA)) ->
    plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
  , dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
  , dx(neg(ALPHA)) -> neg(dx(ALPHA))
  , dx(div(ALPHA, BETA)) ->
    minus(div(dx(ALPHA), BETA),
          times(ALPHA, div(dx(BETA), exp(BETA, two()))))
  , dx(exp(ALPHA, BETA)) ->
    plus(times(BETA, times(exp(ALPHA, minus(BETA, one())), dx(ALPHA))),
         times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
  , dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2()
  , dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2()
  , dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }
Strict Trs:
  { dx(X) -> one()
  , dx(a()) -> zero()
  , dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
  , dx(times(ALPHA, BETA)) ->
    plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
  , dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
  , dx(neg(ALPHA)) -> neg(dx(ALPHA))
  , dx(div(ALPHA, BETA)) ->
    minus(div(dx(ALPHA), BETA),
          times(ALPHA, div(dx(BETA), exp(BETA, two()))))
  , dx(exp(ALPHA, BETA)) ->
    plus(times(BETA, times(exp(ALPHA, minus(BETA, one())), dx(ALPHA))),
         times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))
  , dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2()
  , dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
  Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
  Uargs(c_9) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

                                    [a] = [0]                                          
                                          [0]                                          
                                                                                       
                         [plus](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                        [times](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                        [minus](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                              [neg](x1) = [1 0] x1 + [0]                               
                                          [0 0]      [0]                               
                                                                                       
                          [div](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                          [exp](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                               [ln](x1) = [1 0] x1 + [0]                               
                                          [0 0]      [0]                               
                                                                                       
                             [dx^#](x1) = [1]                                          
                                          [0]                                          
                                                                                       
                                  [c_1] = [0]                                          
                                          [0]                                          
                                                                                       
                                  [c_2] = [0]                                          
                                          [0]                                          
                                                                                       
                          [c_3](x1, x2) = [1 0] x1 + [1 0] x2 + [2]                    
                                          [0 1]      [0 1]      [0]                    
                                                                                       
                  [c_4](x1, x2, x3, x4) = [1 0] x2 + [1 0] x4 + [2]                    
                                          [0 1]      [0 1]      [0]                    
                                                                                       
                          [c_5](x1, x2) = [1 0] x1 + [1 0] x2 + [2]                    
                                          [0 1]      [0 1]      [0]                    
                                                                                       
                              [c_6](x1) = [1 0] x1 + [0]                               
                                          [0 1]      [1]                               
                                                                                       
              [c_7](x1, x2, x3, x4, x5) = [1 0] x1 + [0 0] x2 + [1                     
                                                                 0] x4 + [0 0] x5 + [2]
                                          [0 1]      [0 2]      [0                     
                                                                 1]      [0 2]      [0]
                                                                                       
  [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [1 0] x4 + [0 0] x5 + [1                     
                                                                 0] x8 + [2]           
                                          [0 1]      [1 0]      [0                     
                                                                 1]      [0]           
                                                                                       
                          [c_9](x1, x2) = [1 0] x1 + [0]                               
                                          [0 1]      [0]                               

The order satisfies the following ordering constraints:

                   [dx^#(X)] =  [1]                                              
                                [0]                                              
                             >  [0]                                              
                                [0]                                              
                             =  [c_1()]                                          
                                                                                 
                 [dx^#(a())] =  [1]                                              
                                [0]                                              
                             >  [0]                                              
                                [0]                                              
                             =  [c_2()]                                          
                                                                                 
   [dx^#(plus(ALPHA, BETA))] =  [1]                                              
                                [0]                                              
                             ?  [4]                                              
                                [0]                                              
                             =  [c_3(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                 
  [dx^#(times(ALPHA, BETA))] =  [1]                                              
                                [0]                                              
                             ?  [4]                                              
                                [0]                                              
                             =  [c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))]      
                                                                                 
  [dx^#(minus(ALPHA, BETA))] =  [1]                                              
                                [0]                                              
                             ?  [4]                                              
                                [0]                                              
                             =  [c_5(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                 
          [dx^#(neg(ALPHA))] =  [1]                                              
                                [0]                                              
                             ?  [1]                                              
                                [1]                                              
                             =  [c_6(dx^#(ALPHA))]                               
                                                                                 
    [dx^#(div(ALPHA, BETA))] =  [1]                                              
                                [0]                                              
                             ?  [0 0] BETA + [4]                                 
                                [0 4]        [0]                                 
                             =  [c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)]
                                                                                 
    [dx^#(exp(ALPHA, BETA))] =  [1]                                              
                                [0]                                              
                             ?  [0 0] ALPHA + [4]                                
                                [1 0]         [0]                                
                             =  [c_8(BETA,                                       
                                     ALPHA,                                      
                                     BETA,                                       
                                     dx^#(ALPHA),                                
                                     ALPHA,                                      
                                     BETA,                                       
                                     ALPHA,                                      
                                     dx^#(BETA))]                                
                                                                                 
           [dx^#(ln(ALPHA))] =  [1]                                              
                                [0]                                              
                             >= [1]                                              
                                [0]                                              
                             =  [c_9(dx^#(ALPHA), ALPHA)]                        
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }
Weak DPs:
  { dx^#(X) -> c_1()
  , dx^#(a()) -> c_2() }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ dx^#(X) -> c_1()
, dx^#(a()) -> c_2() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 5: dx^#(div(ALPHA, BETA)) ->
       c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , 6: dx^#(exp(ALPHA, BETA)) ->
       c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , 7: dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                           [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                          [times](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                          [minus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                                [neg](x1) = [1] x1 + [0]         
                                                                 
                            [div](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                            [exp](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                                 [ln](x1) = [1] x1 + [2]         
                                                                 
                               [dx^#](x1) = [4] x1 + [0]         
                                                                 
                            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                    [c_4](x1, x2, x3, x4) = [1] x2 + [1] x4 + [0]
                                                                 
                            [c_5](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                                [c_6](x1) = [1] x1 + [0]         
                                                                 
                [c_7](x1, x2, x3, x4, x5) = [1] x1 + [1] x4 + [0]
                                                                 
    [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [1] x4 + [1] x8 + [0]
                                                                 
                            [c_9](x1, x2) = [1] x1 + [1]         
  
  The order satisfies the following ordering constraints:
  
     [dx^#(plus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [0]                       
                               >= [4] ALPHA + [4] BETA + [0]                       
                               =  [c_3(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                   
    [dx^#(times(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [0]                       
                               >= [4] ALPHA + [4] BETA + [0]                       
                               =  [c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))]      
                                                                                   
    [dx^#(minus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [0]                       
                               >= [4] ALPHA + [4] BETA + [0]                       
                               =  [c_5(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                   
            [dx^#(neg(ALPHA))] =  [4] ALPHA + [0]                                  
                               >= [4] ALPHA + [0]                                  
                               =  [c_6(dx^#(ALPHA))]                               
                                                                                   
      [dx^#(div(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]                       
                               >  [4] ALPHA + [4] BETA + [0]                       
                               =  [c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)]
                                                                                   
      [dx^#(exp(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]                       
                               >  [4] ALPHA + [4] BETA + [0]                       
                               =  [c_8(BETA,                                       
                                       ALPHA,                                      
                                       BETA,                                       
                                       dx^#(ALPHA),                                
                                       ALPHA,                                      
                                       BETA,                                       
                                       ALPHA,                                      
                                       dx^#(BETA))]                                
                                                                                   
             [dx^#(ln(ALPHA))] =  [4] ALPHA + [8]                                  
                               >  [4] ALPHA + [1]                                  
                               =  [c_9(dx^#(ALPHA), ALPHA)]                        
                                                                                   

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA)) }
Weak DPs:
  { dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , 3: dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , 5: dx^#(div(ALPHA, BETA)) ->
       c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , 6: dx^#(exp(ALPHA, BETA)) ->
       c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , 7: dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                           [plus](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                          [times](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                          [minus](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                                [neg](x1) = [1] x1 + [0]         
                                                                 
                            [div](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                            [exp](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                                 [ln](x1) = [1] x1 + [2]         
                                                                 
                               [dx^#](x1) = [4] x1 + [0]         
                                                                 
                            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                    [c_4](x1, x2, x3, x4) = [1] x2 + [1] x4 + [0]
                                                                 
                            [c_5](x1, x2) = [1] x1 + [1] x2 + [1]
                                                                 
                                [c_6](x1) = [1] x1 + [0]         
                                                                 
                [c_7](x1, x2, x3, x4, x5) = [1] x1 + [1] x4 + [0]
                                                                 
    [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [1] x4 + [1] x8 + [0]
                                                                 
                            [c_9](x1, x2) = [1] x1 + [1]         
  
  The order satisfies the following ordering constraints:
  
     [dx^#(plus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]                       
                               >  [4] ALPHA + [4] BETA + [0]                       
                               =  [c_3(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                   
    [dx^#(times(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [0]                       
                               >= [4] ALPHA + [4] BETA + [0]                       
                               =  [c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))]      
                                                                                   
    [dx^#(minus(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]                       
                               >  [4] ALPHA + [4] BETA + [1]                       
                               =  [c_5(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                   
            [dx^#(neg(ALPHA))] =  [4] ALPHA + [0]                                  
                               >= [4] ALPHA + [0]                                  
                               =  [c_6(dx^#(ALPHA))]                               
                                                                                   
      [dx^#(div(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]                       
                               >  [4] ALPHA + [4] BETA + [0]                       
                               =  [c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)]
                                                                                   
      [dx^#(exp(ALPHA, BETA))] =  [4] ALPHA + [4] BETA + [8]                       
                               >  [4] ALPHA + [4] BETA + [0]                       
                               =  [c_8(BETA,                                       
                                       ALPHA,                                      
                                       BETA,                                       
                                       dx^#(ALPHA),                                
                                       ALPHA,                                      
                                       BETA,                                       
                                       ALPHA,                                      
                                       dx^#(BETA))]                                
                                                                                   
             [dx^#(ln(ALPHA))] =  [4] ALPHA + [8]                                  
                               >  [4] ALPHA + [1]                                  
                               =  [c_9(dx^#(ALPHA), ALPHA)]                        
                                                                                   

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA)) }
Weak DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: dx^#(times(ALPHA, BETA)) ->
       c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , 2: dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , 3: dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , 4: dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , 5: dx^#(div(ALPHA, BETA)) ->
       c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , 6: dx^#(exp(ALPHA, BETA)) ->
       c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , 7: dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                           [plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                          [times](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                          [minus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                                [neg](x1) = [1] x1 + [4]         
                                                                 
                            [div](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                            [exp](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                                 [ln](x1) = [1] x1 + [4]         
                                                                 
                               [dx^#](x1) = [2] x1 + [0]         
                                                                 
                            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                    [c_4](x1, x2, x3, x4) = [1] x2 + [1] x4 + [0]
                                                                 
                            [c_5](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                                [c_6](x1) = [1] x1 + [1]         
                                                                 
                [c_7](x1, x2, x3, x4, x5) = [1] x1 + [1] x4 + [0]
                                                                 
    [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [1] x4 + [1] x8 + [0]
                                                                 
                            [c_9](x1, x2) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
     [dx^#(plus(ALPHA, BETA))] = [2] ALPHA + [2] BETA + [8]                       
                               > [2] ALPHA + [2] BETA + [0]                       
                               = [c_3(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                  
    [dx^#(times(ALPHA, BETA))] = [2] ALPHA + [2] BETA + [8]                       
                               > [2] ALPHA + [2] BETA + [0]                       
                               = [c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))]      
                                                                                  
    [dx^#(minus(ALPHA, BETA))] = [2] ALPHA + [2] BETA + [8]                       
                               > [2] ALPHA + [2] BETA + [0]                       
                               = [c_5(dx^#(ALPHA), dx^#(BETA))]                   
                                                                                  
            [dx^#(neg(ALPHA))] = [2] ALPHA + [8]                                  
                               > [2] ALPHA + [1]                                  
                               = [c_6(dx^#(ALPHA))]                               
                                                                                  
      [dx^#(div(ALPHA, BETA))] = [2] ALPHA + [2] BETA + [8]                       
                               > [2] ALPHA + [2] BETA + [0]                       
                               = [c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)]
                                                                                  
      [dx^#(exp(ALPHA, BETA))] = [2] ALPHA + [2] BETA + [8]                       
                               > [2] ALPHA + [2] BETA + [0]                       
                               = [c_8(BETA,                                       
                                      ALPHA,                                      
                                      BETA,                                       
                                      dx^#(ALPHA),                                
                                      ALPHA,                                      
                                      BETA,                                       
                                      ALPHA,                                      
                                      dx^#(BETA))]                                
                                                                                  
             [dx^#(ln(ALPHA))] = [2] ALPHA + [8]                                  
                               > [2] ALPHA + [0]                                  
                               = [c_9(dx^#(ALPHA), ALPHA)]                        
                                                                                  

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
  , dx^#(times(ALPHA, BETA)) ->
    c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
  , dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
  , dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
  , dx^#(div(ALPHA, BETA)) ->
    c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
  , dx^#(exp(ALPHA, BETA)) ->
    c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
  , dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ dx^#(plus(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))
, dx^#(times(ALPHA, BETA)) ->
  c_4(BETA, dx^#(ALPHA), ALPHA, dx^#(BETA))
, dx^#(minus(ALPHA, BETA)) -> c_5(dx^#(ALPHA), dx^#(BETA))
, dx^#(neg(ALPHA)) -> c_6(dx^#(ALPHA))
, dx^#(div(ALPHA, BETA)) ->
  c_7(dx^#(ALPHA), BETA, ALPHA, dx^#(BETA), BETA)
, dx^#(exp(ALPHA, BETA)) ->
  c_8(BETA, ALPHA, BETA, dx^#(ALPHA), ALPHA, BETA, ALPHA, dx^#(BETA))
, dx^#(ln(ALPHA)) -> c_9(dx^#(ALPHA), ALPHA) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))