(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(g(X)) → g(f(f(X)))
f(h(X)) → h(g(X))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(g(X)) → g(f(f(X)))
f(h(X)) → h(g(X))

S is empty.
Rewrite Strategy: FULL

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
h/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(g(X)) → g(f(f(X)))
f(h) → h

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
f(g(X)) → g(f(f(X)))
f(h) → h

Types:
f :: g:h → g:h
g :: g:h → g:h
h :: g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f

(8) Obligation:

TRS:
Rules:
f(g(X)) → g(f(f(X)))
f(h) → h

Types:
f :: g:h → g:h
g :: g:h → g:h
h :: g:h
hole_g:h1_0 :: g:h
gen_g:h2_0 :: Nat → g:h

Generator Equations:
gen_g:h2_0(0) ⇔ h
gen_g:h2_0(+(x, 1)) ⇔ g(gen_g:h2_0(x))

The following defined symbols remain to be analysed:
f

(9) RewriteLemmaProof (EQUIVALENT transformation)

Proved the following rewrite lemma:
f(gen_g:h2_0(n4_0)) → gen_g:h2_0(n4_0), rt ∈ Ω(2n)

Induction Base:
f(gen_g:h2_0(0)) →RΩ(1)
h

Induction Step:
f(gen_g:h2_0(+(n4_0, 1))) →RΩ(1)
g(f(f(gen_g:h2_0(n4_0)))) →IH
g(f(gen_g:h2_0(c5_0))) →IH
g(gen_g:h2_0(c5_0))

We have rt ∈ Ω(2n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(2n)

(10) BOUNDS(2^n, INF)