(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
min, quot, log

They will be analysed ascendingly in the following order:
min < quot
quot < log

(6) Obligation:

TRS:
Rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
min, quot, log

They will be analysed ascendingly in the following order:
min < quot
quot < log

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Induction Base:
min(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)

Induction Step:
min(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
quot, log

They will be analysed ascendingly in the following order:
quot < log

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol quot.

(11) Obligation:

TRS:
Rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
log

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol log.

(13) Obligation:

TRS:
Rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(14) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

(15) BOUNDS(n^1, INF)

(16) Obligation:

TRS:
Rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)

(18) BOUNDS(n^1, INF)