We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { eq(0(), 0()) -> true()
  , eq(0(), s(X)) -> false()
  , eq(s(X), 0()) -> false()
  , eq(s(X), s(Y)) -> eq(X, Y)
  , rm(N, nil()) -> nil()
  , rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
  , ifrm(true(), N, add(M, X)) -> rm(N, X)
  , ifrm(false(), N, add(M, X)) -> add(M, rm(N, X))
  , purge(nil()) -> nil()
  , purge(add(N, X)) -> add(N, purge(rm(N, X))) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^2))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

Trs:
  { eq(0(), 0()) -> true()
  , rm(N, nil()) -> nil()
  , ifrm(true(), N, add(M, X)) -> rm(N, X)
  , purge(nil()) -> nil()
  , purge(add(N, X)) -> add(N, purge(rm(N, X))) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(rm) = {2}, Uargs(add) = {2}, Uargs(ifrm) = {1, 3},
    Uargs(purge) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
          [eq](x1, x2) = [2]                  
                                              
                   [0] = [2]                  
                                              
                [true] = [0]                  
                                              
               [s](x1) = [1] x1 + [0]         
                                              
               [false] = [2]                  
                                              
          [rm](x1, x2) = [1] x2 + [2]         
                                              
                 [nil] = [0]                  
                                              
         [add](x1, x2) = [1] x1 + [1] x2 + [3]
                                              
    [ifrm](x1, x2, x3) = [1] x1 + [1] x3 + [0]
                                              
           [purge](x1) = [4] x1 + [3]         
  
  The order satisfies the following ordering constraints:
  
                   [eq(0(), 0())] =  [2]                           
                                  >  [0]                           
                                  =  [true()]                      
                                                                   
                  [eq(0(), s(X))] =  [2]                           
                                  >= [2]                           
                                  =  [false()]                     
                                                                   
                  [eq(s(X), 0())] =  [2]                           
                                  >= [2]                           
                                  =  [false()]                     
                                                                   
                 [eq(s(X), s(Y))] =  [2]                           
                                  >= [2]                           
                                  =  [eq(X, Y)]                    
                                                                   
                   [rm(N, nil())] =  [2]                           
                                  >  [0]                           
                                  =  [nil()]                       
                                                                   
               [rm(N, add(M, X))] =  [1] X + [1] M + [5]           
                                  >= [1] X + [1] M + [5]           
                                  =  [ifrm(eq(N, M), N, add(M, X))]
                                                                   
     [ifrm(true(), N, add(M, X))] =  [1] X + [1] M + [3]           
                                  >  [1] X + [2]                   
                                  =  [rm(N, X)]                    
                                                                   
    [ifrm(false(), N, add(M, X))] =  [1] X + [1] M + [5]           
                                  >= [1] X + [1] M + [5]           
                                  =  [add(M, rm(N, X))]            
                                                                   
                   [purge(nil())] =  [3]                           
                                  >  [0]                           
                                  =  [nil()]                       
                                                                   
               [purge(add(N, X))] =  [4] X + [4] N + [15]          
                                  >  [4] X + [1] N + [14]          
                                  =  [add(N, purge(rm(N, X)))]     
                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { eq(0(), s(X)) -> false()
  , eq(s(X), 0()) -> false()
  , eq(s(X), s(Y)) -> eq(X, Y)
  , rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
  , ifrm(false(), N, add(M, X)) -> add(M, rm(N, X)) }
Weak Trs:
  { eq(0(), 0()) -> true()
  , rm(N, nil()) -> nil()
  , ifrm(true(), N, add(M, X)) -> rm(N, X)
  , purge(nil()) -> nil()
  , purge(add(N, X)) -> add(N, purge(rm(N, X))) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(rm) = {2}, Uargs(add) = {2}, Uargs(ifrm) = {1, 3},
  Uargs(purge) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

        [eq](x1, x2) = [4]                  
                                            
                 [0] = [0]                  
                                            
              [true] = [4]                  
                                            
             [s](x1) = [1] x1 + [0]         
                                            
             [false] = [0]                  
                                            
        [rm](x1, x2) = [1] x2 + [0]         
                                            
               [nil] = [0]                  
                                            
       [add](x1, x2) = [1] x2 + [0]         
                                            
  [ifrm](x1, x2, x3) = [1] x1 + [1] x3 + [0]
                                            
         [purge](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                 [eq(0(), 0())] =  [4]                           
                                >= [4]                           
                                =  [true()]                      
                                                                 
                [eq(0(), s(X))] =  [4]                           
                                >  [0]                           
                                =  [false()]                     
                                                                 
                [eq(s(X), 0())] =  [4]                           
                                >  [0]                           
                                =  [false()]                     
                                                                 
               [eq(s(X), s(Y))] =  [4]                           
                                >= [4]                           
                                =  [eq(X, Y)]                    
                                                                 
                 [rm(N, nil())] =  [0]                           
                                >= [0]                           
                                =  [nil()]                       
                                                                 
             [rm(N, add(M, X))] =  [1] X + [0]                   
                                ?  [1] X + [4]                   
                                =  [ifrm(eq(N, M), N, add(M, X))]
                                                                 
   [ifrm(true(), N, add(M, X))] =  [1] X + [4]                   
                                >  [1] X + [0]                   
                                =  [rm(N, X)]                    
                                                                 
  [ifrm(false(), N, add(M, X))] =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  [add(M, rm(N, X))]            
                                                                 
                 [purge(nil())] =  [0]                           
                                >= [0]                           
                                =  [nil()]                       
                                                                 
             [purge(add(N, X))] =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  [add(N, purge(rm(N, X)))]     
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { eq(s(X), s(Y)) -> eq(X, Y)
  , rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
  , ifrm(false(), N, add(M, X)) -> add(M, rm(N, X)) }
Weak Trs:
  { eq(0(), 0()) -> true()
  , eq(0(), s(X)) -> false()
  , eq(s(X), 0()) -> false()
  , rm(N, nil()) -> nil()
  , ifrm(true(), N, add(M, X)) -> rm(N, X)
  , purge(nil()) -> nil()
  , purge(add(N, X)) -> add(N, purge(rm(N, X))) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(rm) = {2}, Uargs(add) = {2}, Uargs(ifrm) = {1, 3},
  Uargs(purge) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

        [eq](x1, x2) = [4]                  
                                            
                 [0] = [0]                  
                                            
              [true] = [4]                  
                                            
             [s](x1) = [1] x1 + [0]         
                                            
             [false] = [1]                  
                                            
        [rm](x1, x2) = [1] x2 + [0]         
                                            
               [nil] = [0]                  
                                            
       [add](x1, x2) = [1] x2 + [0]         
                                            
  [ifrm](x1, x2, x3) = [1] x1 + [1] x3 + [0]
                                            
         [purge](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

                 [eq(0(), 0())] =  [4]                           
                                >= [4]                           
                                =  [true()]                      
                                                                 
                [eq(0(), s(X))] =  [4]                           
                                >  [1]                           
                                =  [false()]                     
                                                                 
                [eq(s(X), 0())] =  [4]                           
                                >  [1]                           
                                =  [false()]                     
                                                                 
               [eq(s(X), s(Y))] =  [4]                           
                                >= [4]                           
                                =  [eq(X, Y)]                    
                                                                 
                 [rm(N, nil())] =  [0]                           
                                >= [0]                           
                                =  [nil()]                       
                                                                 
             [rm(N, add(M, X))] =  [1] X + [0]                   
                                ?  [1] X + [4]                   
                                =  [ifrm(eq(N, M), N, add(M, X))]
                                                                 
   [ifrm(true(), N, add(M, X))] =  [1] X + [4]                   
                                >  [1] X + [0]                   
                                =  [rm(N, X)]                    
                                                                 
  [ifrm(false(), N, add(M, X))] =  [1] X + [1]                   
                                >  [1] X + [0]                   
                                =  [add(M, rm(N, X))]            
                                                                 
                 [purge(nil())] =  [0]                           
                                >= [0]                           
                                =  [nil()]                       
                                                                 
             [purge(add(N, X))] =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  [add(N, purge(rm(N, X)))]     
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { eq(s(X), s(Y)) -> eq(X, Y)
  , rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X)) }
Weak Trs:
  { eq(0(), 0()) -> true()
  , eq(0(), s(X)) -> false()
  , eq(s(X), 0()) -> false()
  , rm(N, nil()) -> nil()
  , ifrm(true(), N, add(M, X)) -> rm(N, X)
  , ifrm(false(), N, add(M, X)) -> add(M, rm(N, X))
  , purge(nil()) -> nil()
  , purge(add(N, X)) -> add(N, purge(rm(N, X))) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(rm) = {2}, Uargs(add) = {2}, Uargs(ifrm) = {1, 3},
  Uargs(purge) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

        [eq](x1, x2) = [0 2] x2 + [0]           
                       [0 1]      [0]           
                                                
                 [0] = [4]                      
                       [4]                      
                                                
              [true] = [0]                      
                       [1]                      
                                                
             [s](x1) = [1 0] x1 + [2]           
                       [0 1]      [3]           
                                                
             [false] = [3]                      
                       [3]                      
                                                
        [rm](x1, x2) = [1 7] x2 + [0]           
                       [0 0]      [0]           
                                                
               [nil] = [0]                      
                       [0]                      
                                                
       [add](x1, x2) = [0 3] x1 + [1 7] x2 + [1]
                       [0 1]      [0 0]      [1]
                                                
  [ifrm](x1, x2, x3) = [1 2] x1 + [1 0] x3 + [1]
                       [0 0]      [0 1]      [5]
                                                
         [purge](x1) = [1 0] x1 + [5]           
                       [0 1]      [0]           

The order satisfies the following ordering constraints:

                 [eq(0(), 0())] =  [8]                           
                                   [4]                           
                                >  [0]                           
                                   [1]                           
                                =  [true()]                      
                                                                 
                [eq(0(), s(X))] =  [0 2] X + [6]                 
                                   [0 1]     [3]                 
                                >  [3]                           
                                   [3]                           
                                =  [false()]                     
                                                                 
                [eq(s(X), 0())] =  [8]                           
                                   [4]                           
                                >  [3]                           
                                   [3]                           
                                =  [false()]                     
                                                                 
               [eq(s(X), s(Y))] =  [0 2] Y + [6]                 
                                   [0 1]     [3]                 
                                >  [0 2] Y + [0]                 
                                   [0 1]     [0]                 
                                =  [eq(X, Y)]                    
                                                                 
                 [rm(N, nil())] =  [0]                           
                                   [0]                           
                                >= [0]                           
                                   [0]                           
                                =  [nil()]                       
                                                                 
             [rm(N, add(M, X))] =  [1 7] X + [0 10] M + [8]      
                                   [0 0]     [0  0]     [0]      
                                ?  [1 7] X + [0 7] M + [2]       
                                   [0 0]     [0 1]     [6]       
                                =  [ifrm(eq(N, M), N, add(M, X))]
                                                                 
   [ifrm(true(), N, add(M, X))] =  [1 7] X + [0 3] M + [4]       
                                   [0 0]     [0 1]     [6]       
                                >  [1 7] X + [0]                 
                                   [0 0]     [0]                 
                                =  [rm(N, X)]                    
                                                                 
  [ifrm(false(), N, add(M, X))] =  [1 7] X + [0 3] M + [11]      
                                   [0 0]     [0 1]     [6]       
                                >  [1 7] X + [0 3] M + [1]       
                                   [0 0]     [0 1]     [1]       
                                =  [add(M, rm(N, X))]            
                                                                 
                 [purge(nil())] =  [5]                           
                                   [0]                           
                                >  [0]                           
                                   [0]                           
                                =  [nil()]                       
                                                                 
             [purge(add(N, X))] =  [1 7] X + [0 3] N + [6]       
                                   [0 0]     [0 1]     [1]       
                                >= [1 7] X + [0 3] N + [6]       
                                   [0 0]     [0 1]     [1]       
                                =  [add(N, purge(rm(N, X)))]     
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs: { rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X)) }
Weak Trs:
  { eq(0(), 0()) -> true()
  , eq(0(), s(X)) -> false()
  , eq(s(X), 0()) -> false()
  , eq(s(X), s(Y)) -> eq(X, Y)
  , rm(N, nil()) -> nil()
  , ifrm(true(), N, add(M, X)) -> rm(N, X)
  , ifrm(false(), N, add(M, X)) -> add(M, rm(N, X))
  , purge(nil()) -> nil()
  , purge(add(N, X)) -> add(N, purge(rm(N, X))) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^2))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs: { rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^2)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(rm) = {2}, Uargs(add) = {2}, Uargs(ifrm) = {1, 3},
    Uargs(purge) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
          [eq](x1, x2) = [0]                      
                         [0]                      
                                                  
                   [0] = [3]                      
                         [0]                      
                                                  
                [true] = [0]                      
                         [0]                      
                                                  
               [s](x1) = [1 0] x1 + [3]           
                         [0 1]      [3]           
                                                  
               [false] = [0]                      
                         [0]                      
                                                  
          [rm](x1, x2) = [1 1] x2 + [1]           
                         [0 1]      [0]           
                                                  
                 [nil] = [0]                      
                         [0]                      
                                                  
         [add](x1, x2) = [0 3] x1 + [1 4] x2 + [2]
                         [0 1]      [0 1]      [7]
                                                  
    [ifrm](x1, x2, x3) = [5 1] x1 + [1 1] x3 + [0]
                         [0 0]      [0 1]      [0]
                                                  
           [purge](x1) = [3 0] x1 + [2]           
                         [0 2]      [0]           
  
  The order satisfies the following ordering constraints:
  
                   [eq(0(), 0())] =  [0]                           
                                     [0]                           
                                  >= [0]                           
                                     [0]                           
                                  =  [true()]                      
                                                                   
                  [eq(0(), s(X))] =  [0]                           
                                     [0]                           
                                  >= [0]                           
                                     [0]                           
                                  =  [false()]                     
                                                                   
                  [eq(s(X), 0())] =  [0]                           
                                     [0]                           
                                  >= [0]                           
                                     [0]                           
                                  =  [false()]                     
                                                                   
                 [eq(s(X), s(Y))] =  [0]                           
                                     [0]                           
                                  >= [0]                           
                                     [0]                           
                                  =  [eq(X, Y)]                    
                                                                   
                   [rm(N, nil())] =  [1]                           
                                     [0]                           
                                  >  [0]                           
                                     [0]                           
                                  =  [nil()]                       
                                                                   
               [rm(N, add(M, X))] =  [1 5] X + [0 4] M + [10]      
                                     [0 1]     [0 1]     [7]       
                                  >  [1 5] X + [0 4] M + [9]       
                                     [0 1]     [0 1]     [7]       
                                  =  [ifrm(eq(N, M), N, add(M, X))]
                                                                   
     [ifrm(true(), N, add(M, X))] =  [1 5] X + [0 4] M + [9]       
                                     [0 1]     [0 1]     [7]       
                                  >  [1 1] X + [1]                 
                                     [0 1]     [0]                 
                                  =  [rm(N, X)]                    
                                                                   
    [ifrm(false(), N, add(M, X))] =  [1 5] X + [0 4] M + [9]       
                                     [0 1]     [0 1]     [7]       
                                  >  [1 5] X + [0 3] M + [3]       
                                     [0 1]     [0 1]     [7]       
                                  =  [add(M, rm(N, X))]            
                                                                   
                   [purge(nil())] =  [2]                           
                                     [0]                           
                                  >  [0]                           
                                     [0]                           
                                  =  [nil()]                       
                                                                   
               [purge(add(N, X))] =  [3 12] X + [0 9] N + [8]      
                                     [0  2]     [0 2]     [14]     
                                  >  [3 11] X + [0 3] N + [7]      
                                     [0  2]     [0 1]     [7]      
                                  =  [add(N, purge(rm(N, X)))]     
                                                                   

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { eq(0(), 0()) -> true()
  , eq(0(), s(X)) -> false()
  , eq(s(X), 0()) -> false()
  , eq(s(X), s(Y)) -> eq(X, Y)
  , rm(N, nil()) -> nil()
  , rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
  , ifrm(true(), N, add(M, X)) -> rm(N, X)
  , ifrm(false(), N, add(M, X)) -> add(M, rm(N, X))
  , purge(nil()) -> nil()
  , purge(add(N, X)) -> add(N, purge(rm(N, X))) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))