*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: concat(cons(U,V),Y) -> cons(U,concat(V,Y)) concat(leaf(),Y) -> Y lessleaves(X,leaf()) -> false() lessleaves(cons(U,V),cons(W,Z)) -> lessleaves(concat(U,V),concat(W,Z)) lessleaves(leaf(),cons(W,Z)) -> true() Weak DP Rules: Weak TRS Rules: Signature: {concat/2,lessleaves/2} / {cons/2,false/0,leaf/0,true/0} Obligation: Full basic terms: {concat,lessleaves}/{cons,false,leaf,true} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: concat(cons(U,V),Y) -> cons(U,concat(V,Y)) concat(leaf(),Y) -> Y lessleaves(X,leaf()) -> false() lessleaves(cons(U,V),cons(W,Z)) -> lessleaves(concat(U,V),concat(W,Z)) lessleaves(leaf(),cons(W,Z)) -> true() Weak DP Rules: Weak TRS Rules: Signature: {concat/2,lessleaves/2} / {cons/2,false/0,leaf/0,true/0} Obligation: Innermost basic terms: {concat,lessleaves}/{cons,false,leaf,true} Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} Proof: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. concat_0(2,2) -> 1 concat_1(2,2) -> 3 concat_1(2,2) -> 4 concat_1(2,2) -> 5 concat_1(2,3) -> 3 concat_1(2,3) -> 4 concat_1(2,3) -> 5 concat_2(2,3) -> 4 concat_2(2,3) -> 5 cons_0(2,2) -> 1 cons_0(2,2) -> 2 cons_0(2,2) -> 3 cons_0(2,2) -> 4 cons_0(2,2) -> 5 cons_1(2,3) -> 1 cons_1(2,3) -> 3 cons_1(2,3) -> 4 cons_1(2,3) -> 5 false_0() -> 1 false_0() -> 2 false_0() -> 3 false_0() -> 4 false_0() -> 5 false_1() -> 1 leaf_0() -> 1 leaf_0() -> 2 leaf_0() -> 3 leaf_0() -> 4 leaf_0() -> 5 lessleaves_0(2,2) -> 1 lessleaves_1(3,3) -> 1 lessleaves_2(4,5) -> 1 true_0() -> 1 true_0() -> 2 true_0() -> 3 true_0() -> 4 true_0() -> 5 true_1() -> 1 2 -> 1 2 -> 3 2 -> 4 2 -> 5 3 -> 4 3 -> 5 *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: concat(cons(U,V),Y) -> cons(U,concat(V,Y)) concat(leaf(),Y) -> Y lessleaves(X,leaf()) -> false() lessleaves(cons(U,V),cons(W,Z)) -> lessleaves(concat(U,V),concat(W,Z)) lessleaves(leaf(),cons(W,Z)) -> true() Signature: {concat/2,lessleaves/2} / {cons/2,false/0,leaf/0,true/0} Obligation: Innermost basic terms: {concat,lessleaves}/{cons,false,leaf,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).