*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(a,cons(x,k)) -> f(cons(x,a),k)
f(a,empty()) -> g(a,empty())
g(cons(x,k),d) -> g(k,cons(x,d))
g(empty(),d) -> d
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2,g/2} / {cons/2,empty/0}
Obligation:
Full
basic terms: {f,g}/{cons,empty}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(a,cons(x,k)) -> f(cons(x,a),k)
f(a,empty()) -> g(a,empty())
g(cons(x,k),d) -> g(k,cons(x,d))
g(empty(),d) -> d
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2,g/2} / {cons/2,empty/0}
Obligation:
Innermost
basic terms: {f,g}/{cons,empty}
Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
Proof:
The problem is match-bounded by 3.
The enriched problem is compatible with follwoing automaton.
cons_0(2,2) -> 1
cons_0(2,2) -> 2
cons_1(2,2) -> 1
cons_1(2,2) -> 3
cons_1(2,3) -> 1
cons_1(2,3) -> 3
cons_1(2,4) -> 1
cons_1(2,4) -> 3
cons_1(2,5) -> 1
cons_1(2,5) -> 3
cons_2(2,4) -> 1
cons_2(2,4) -> 5
cons_2(2,5) -> 1
cons_2(2,5) -> 5
cons_3(2,5) -> 1
cons_3(2,5) -> 6
cons_3(2,6) -> 1
cons_3(2,6) -> 6
empty_0() -> 1
empty_0() -> 2
empty_1() -> 1
empty_1() -> 4
f_0(2,2) -> 1
f_1(3,2) -> 1
g_0(2,2) -> 1
g_1(2,3) -> 1
g_1(2,4) -> 1
g_1(3,4) -> 1
g_2(2,5) -> 1
g_2(3,5) -> 1
g_2(4,5) -> 1
g_2(5,5) -> 1
g_3(4,6) -> 1
g_3(5,6) -> 1
2 -> 1
3 -> 1
4 -> 1
5 -> 1
6 -> 1
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(a,cons(x,k)) -> f(cons(x,a),k)
f(a,empty()) -> g(a,empty())
g(cons(x,k),d) -> g(k,cons(x,d))
g(empty(),d) -> d
Signature:
{f/2,g/2} / {cons/2,empty/0}
Obligation:
Innermost
basic terms: {f,g}/{cons,empty}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).