(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(cons(a, k), cons(a358_0, k359_0)) →+ f(k, k359_0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [k / cons(a, k), k359_0 / cons(a358_0, k359_0)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, empty) → x
f(empty, cons(k)) → f(cons(k), k)
f(cons(k), y) → f(y, k)
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
f(x, empty) → x
f(empty, cons(k)) → f(cons(k), k)
f(cons(k), y) → f(y, k)
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(10) Obligation:
TRS:
Rules:
f(
x,
empty) →
xf(
empty,
cons(
k)) →
f(
cons(
k),
k)
f(
cons(
k),
y) →
f(
y,
k)
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
The following defined symbols remain to be analysed:
f
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(12) Obligation:
TRS:
Rules:
f(
x,
empty) →
xf(
empty,
cons(
k)) →
f(
cons(
k),
k)
f(
cons(
k),
y) →
f(
y,
k)
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
No more defined symbols left to analyse.