(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
p(m, s(r3_1), s(r)) →+ p(m, r3_1, r)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [r3_1 / s(r3_1), r / s(r)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0') → p(0', n, m)
p(m, 0', 0') → m
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0') → p(0', n, m)
p(m, 0', 0') → m
Types:
p :: s:0' → s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
p
(8) Obligation:
TRS:
Rules:
p(
m,
n,
s(
r)) →
p(
m,
r,
n)
p(
m,
s(
n),
0') →
p(
0',
n,
m)
p(
m,
0',
0') →
mTypes:
p :: s:0' → s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
p
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol p.
(10) Obligation:
TRS:
Rules:
p(
m,
n,
s(
r)) →
p(
m,
r,
n)
p(
m,
s(
n),
0') →
p(
0',
n,
m)
p(
m,
0',
0') →
mTypes:
p :: s:0' → s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.