*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) Weak DP Rules: Weak TRS Rules: Signature: {f/2,g/3} / {cons/2,empty/0} Obligation: Full basic terms: {f,g}/{cons,empty} Applied Processor: DependencyPairs {dpKind_ = WIDP} Proof: We add the following weak dependency pairs: Strict DPs f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) Strict TRS Rules: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) Weak DP Rules: Weak TRS Rules: Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} Obligation: Full basic terms: {f#,g#}/{cons,empty} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} Obligation: Full basic terms: {f#,g#}/{cons,empty} Applied Processor: Succeeding Proof: () *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} Obligation: Full basic terms: {f#,g#}/{cons,empty} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(cons(x,k),l) -> c_1(g#(k ,l ,cons(x,k))) 2: f#(empty(),l) -> c_2(l) Consider the set of all dependency pairs 1: f#(cons(x,k),l) -> c_1(g#(k ,l ,cons(x,k))) 2: f#(empty(),l) -> c_2(l) 3: g#(a,b,c) -> c_3(f#(a ,cons(b,c))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1,2} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} Obligation: Full basic terms: {f#,g#}/{cons,empty} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(cons) = [1] x2 + [12] p(empty) = [0] p(f) = [1] x2 + [0] p(g) = [1] x1 + [1] x2 + [1] x3 + [1] p(f#) = [1] x1 + [6] p(g#) = [1] x1 + [6] p(c_1) = [1] x1 + [1] p(c_2) = [5] p(c_3) = [1] x1 + [0] Following rules are strictly oriented: f#(cons(x,k),l) = [1] k + [18] > [1] k + [7] = c_1(g#(k,l,cons(x,k))) f#(empty(),l) = [6] > [5] = c_2(l) Following rules are (at-least) weakly oriented: g#(a,b,c) = [1] a + [6] >= [1] a + [6] = c_3(f#(a,cons(b,c))) *** 1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: g#(a,b,c) -> c_3(f#(a,cons(b,c))) Strict TRS Rules: Weak DP Rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) Weak TRS Rules: Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} Obligation: Full basic terms: {f#,g#}/{cons,empty} Applied Processor: Assumption Proof: () *** 1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2(l) g#(a,b,c) -> c_3(f#(a,cons(b,c))) Weak TRS Rules: Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} Obligation: Full basic terms: {f#,g#}/{cons,empty} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) -->_1 g#(a,b,c) -> c_3(f#(a,cons(b,c))):3 2:W:f#(empty(),l) -> c_2(l) -->_1 g#(a,b,c) -> c_3(f#(a,cons(b,c))):3 -->_1 f#(empty(),l) -> c_2(l):2 -->_1 f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))):1 3:W:g#(a,b,c) -> c_3(f#(a,cons(b,c))) -->_1 f#(empty(),l) -> c_2(l):2 -->_1 f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(cons(x,k),l) -> c_1(g#(k ,l ,cons(x,k))) 3: g#(a,b,c) -> c_3(f#(a ,cons(b,c))) 2: f#(empty(),l) -> c_2(l) *** 1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/1,c_3/1} Obligation: Full basic terms: {f#,g#}/{cons,empty} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).