(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(cons(x, k), l) →+ f(k, cons(l, cons(x, k)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [k / cons(x, k)].
The result substitution is [l / cons(l, cons(x, k))].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons → empty:cons
g :: empty:cons → empty:cons → empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
empty,
l) →
lf(
cons(
x,
k),
l) →
g(
k,
l,
cons(
x,
k))
g(
a,
b,
c) →
f(
a,
cons(
b,
c))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons → empty:cons
g :: empty:cons → empty:cons → empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(empty, gen_empty:cons2_0(x))
The following defined symbols remain to be analysed:
f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
empty,
l) →
lf(
cons(
x,
k),
l) →
g(
k,
l,
cons(
x,
k))
g(
a,
b,
c) →
f(
a,
cons(
b,
c))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
cons :: empty:cons → empty:cons → empty:cons
g :: empty:cons → empty:cons → empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(empty, gen_empty:cons2_0(x))
No more defined symbols left to analyse.