*** 1 Progress [(O(1),O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
copy(0(),y,z) -> f(z)
copy(s(x),y,z) -> copy(x,y,cons(f(y),z))
f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z)
f(cons(nil(),y)) -> y
Weak DP Rules:
Weak TRS Rules:
Signature:
{copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1}
Obligation:
Full
basic terms: {copy,f}/{0,cons,n,nil,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(cons) = {1,2},
uargs(copy) = {2,3},
uargs(f) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(0) = 1
p(cons) = x1 + x2
p(copy) = 2*x1 + 4*x1*x2 + 2*x2 + 2*x3
p(f) = 2*x1
p(n) = 0
p(nil) = 0
p(s) = 1 + x1
Following rules are strictly oriented:
copy(0(),y,z) = 2 + 6*y + 2*z
> 2*z
= f(z)
copy(s(x),y,z) = 2 + 2*x + 4*x*y + 6*y + 2*z
> 2*x + 4*x*y + 6*y + 2*z
= copy(x,y,cons(f(y),z))
Following rules are (at-least) weakly oriented:
f(cons(f(cons(nil(),y)),z)) = 4*y + 2*z
>= 2*y + 2*z
= copy(n(),y,z)
f(cons(nil(),y)) = 2*y
>= y
= y
*** 1.1 Progress [(O(1),O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z)
f(cons(nil(),y)) -> y
Weak DP Rules:
Weak TRS Rules:
copy(0(),y,z) -> f(z)
copy(s(x),y,z) -> copy(x,y,cons(f(y),z))
Signature:
{copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1}
Obligation:
Full
basic terms: {copy,f}/{0,cons,n,nil,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(cons) = {1,2},
uargs(copy) = {2,3},
uargs(f) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(0) = 1
p(cons) = x1 + x2
p(copy) = x1 + 6*x1*x2 + 4*x2 + 2*x3
p(f) = 2*x1
p(n) = 0
p(nil) = 1
p(s) = 1 + x1
Following rules are strictly oriented:
f(cons(f(cons(nil(),y)),z)) = 4 + 4*y + 2*z
> 4*y + 2*z
= copy(n(),y,z)
f(cons(nil(),y)) = 2 + 2*y
> y
= y
Following rules are (at-least) weakly oriented:
copy(0(),y,z) = 1 + 10*y + 2*z
>= 2*z
= f(z)
copy(s(x),y,z) = 1 + x + 6*x*y + 10*y + 2*z
>= x + 6*x*y + 8*y + 2*z
= copy(x,y,cons(f(y),z))
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
copy(0(),y,z) -> f(z)
copy(s(x),y,z) -> copy(x,y,cons(f(y),z))
f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z)
f(cons(nil(),y)) -> y
Signature:
{copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1}
Obligation:
Full
basic terms: {copy,f}/{0,cons,n,nil,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).