*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) f(cons(nil(),y)) -> y Weak DP Rules: Weak TRS Rules: Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} Obligation: Full basic terms: {copy,f}/{0,cons,n,nil,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(copy) = {2,3}, uargs(f) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = 1 p(cons) = x1 + x2 p(copy) = 2*x1 + 4*x1*x2 + 2*x2 + 2*x3 p(f) = 2*x1 p(n) = 0 p(nil) = 0 p(s) = 1 + x1 Following rules are strictly oriented: copy(0(),y,z) = 2 + 6*y + 2*z > 2*z = f(z) copy(s(x),y,z) = 2 + 2*x + 4*x*y + 6*y + 2*z > 2*x + 4*x*y + 6*y + 2*z = copy(x,y,cons(f(y),z)) Following rules are (at-least) weakly oriented: f(cons(f(cons(nil(),y)),z)) = 4*y + 2*z >= 2*y + 2*z = copy(n(),y,z) f(cons(nil(),y)) = 2*y >= y = y *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) f(cons(nil(),y)) -> y Weak DP Rules: Weak TRS Rules: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} Obligation: Full basic terms: {copy,f}/{0,cons,n,nil,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(copy) = {2,3}, uargs(f) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = 1 p(cons) = x1 + x2 p(copy) = x1 + 6*x1*x2 + 4*x2 + 2*x3 p(f) = 2*x1 p(n) = 0 p(nil) = 1 p(s) = 1 + x1 Following rules are strictly oriented: f(cons(f(cons(nil(),y)),z)) = 4 + 4*y + 2*z > 4*y + 2*z = copy(n(),y,z) f(cons(nil(),y)) = 2 + 2*y > y = y Following rules are (at-least) weakly oriented: copy(0(),y,z) = 1 + 10*y + 2*z >= 2*z = f(z) copy(s(x),y,z) = 1 + x + 6*x*y + 10*y + 2*z >= x + 6*x*y + 8*y + 2*z = copy(x,y,cons(f(y),z)) *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) f(cons(nil(),y)) -> y Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} Obligation: Full basic terms: {copy,f}/{0,cons,n,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).