(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0) → s(x)
gcd(0, s(y)) → s(y)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
min, max, -, gcd

They will be analysed ascendingly in the following order:
min < gcd
max < gcd
- < gcd

(8) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
min, max, -, gcd

They will be analysed ascendingly in the following order:
min < gcd
max < gcd
- < gcd

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Induction Base:
min(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
0'

Induction Step:
min(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(c5_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
max, -, gcd

They will be analysed ascendingly in the following order:
max < gcd
- < gcd

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)

Induction Base:
max(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)

Induction Step:
max(gen_0':s2_0(+(n312_0, 1)), gen_0':s2_0(+(n312_0, 1))) →RΩ(1)
s(max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0))) →IH
s(gen_0':s2_0(c313_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
-, gcd

They will be analysed ascendingly in the following order:
- < gcd

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n7000)

Induction Base:
-(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)

Induction Step:
-(gen_0':s2_0(+(n700_0, 1)), gen_0':s2_0(+(n700_0, 1))) →RΩ(1)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) →IH
gen_0':s2_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n7000)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
gcd

(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol gcd.

(19) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n7000)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n7000)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

(24) BOUNDS(n^1, INF)

(25) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
gcd(s(x), 0') → s(x)
gcd(0', s(y)) → s(y)

Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)

(30) BOUNDS(n^1, INF)