(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0) → 0
div(0, y) → 0
div(s(x), s(y)) → if(lt(x, y), 0, s(div(-(x, y), s(y))))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(x, 0') → x
-(0', s(y)) → 0'
-(s(x), s(y)) → -(x, y)
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0') → 0'
div(0', y) → 0'
div(s(x), s(y)) → if(lt(x, y), 0', s(div(-(x, y), s(y))))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
-(x, 0') → x
-(0', s(y)) → 0'
-(s(x), s(y)) → -(x, y)
lt(x, 0') → false
lt(0', s(y)) → true
lt(s(x), s(y)) → lt(x, y)
if(true, x, y) → x
if(false, x, y) → y
div(x, 0') → 0'
div(0', y) → 0'
div(s(x), s(y)) → if(lt(x, y), 0', s(div(-(x, y), s(y))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
if :: false:true → 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
-,
lt,
divThey will be analysed ascendingly in the following order:
- < div
lt < div
(6) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
ydiv(
x,
0') →
0'div(
0',
y) →
0'div(
s(
x),
s(
y)) →
if(
lt(
x,
y),
0',
s(
div(
-(
x,
y),
s(
y))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
if :: false:true → 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, lt, div
They will be analysed ascendingly in the following order:
- < div
lt < div
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
ydiv(
x,
0') →
0'div(
0',
y) →
0'div(
s(
x),
s(
y)) →
if(
lt(
x,
y),
0',
s(
div(
-(
x,
y),
s(
y))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
if :: false:true → 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, div
They will be analysed ascendingly in the following order:
lt < div
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n393_0),
gen_0':s3_0(
n393_0)) →
false, rt ∈ Ω(1 + n393
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
lt(gen_0':s3_0(+(n393_0, 1)), gen_0':s3_0(+(n393_0, 1))) →RΩ(1)
lt(gen_0':s3_0(n393_0), gen_0':s3_0(n393_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
ydiv(
x,
0') →
0'div(
0',
y) →
0'div(
s(
x),
s(
y)) →
if(
lt(
x,
y),
0',
s(
div(
-(
x,
y),
s(
y))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
if :: false:true → 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n393_0), gen_0':s3_0(n393_0)) → false, rt ∈ Ω(1 + n3930)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
div
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(14) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
ydiv(
x,
0') →
0'div(
0',
y) →
0'div(
s(
x),
s(
y)) →
if(
lt(
x,
y),
0',
s(
div(
-(
x,
y),
s(
y))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
if :: false:true → 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n393_0), gen_0':s3_0(n393_0)) → false, rt ∈ Ω(1 + n3930)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
ydiv(
x,
0') →
0'div(
0',
y) →
0'div(
s(
x),
s(
y)) →
if(
lt(
x,
y),
0',
s(
div(
-(
x,
y),
s(
y))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
if :: false:true → 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
lt(gen_0':s3_0(n393_0), gen_0':s3_0(n393_0)) → false, rt ∈ Ω(1 + n3930)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
lt(
x,
0') →
falselt(
0',
s(
y)) →
truelt(
s(
x),
s(
y)) →
lt(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
ydiv(
x,
0') →
0'div(
0',
y) →
0'div(
s(
x),
s(
y)) →
if(
lt(
x,
y),
0',
s(
div(
-(
x,
y),
s(
y))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lt :: 0':s → 0':s → false:true
false :: false:true
true :: false:true
if :: false:true → 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)