(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
leq(0, y) → true
leq(s(x), 0) → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
leq(0', y) → true
leq(s(x), 0') → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
mod(0', y) → 0'
mod(s(x), 0') → 0'
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
leq(0', y) → true
leq(s(x), 0') → false
leq(s(x), s(y)) → leq(x, y)
if(true, x, y) → x
if(false, x, y) → y
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
mod(0', y) → 0'
mod(s(x), 0') → 0'
mod(s(x), s(y)) → if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x))
Types:
leq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
if :: true:false → 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
leq,
-,
modThey will be analysed ascendingly in the following order:
leq < mod
- < mod
(6) Obligation:
TRS:
Rules:
leq(
0',
y) →
trueleq(
s(
x),
0') →
falseleq(
s(
x),
s(
y)) →
leq(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
y-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
mod(
0',
y) →
0'mod(
s(
x),
0') →
0'mod(
s(
x),
s(
y)) →
if(
leq(
y,
x),
mod(
-(
s(
x),
s(
y)),
s(
y)),
s(
x))
Types:
leq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
if :: true:false → 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
leq, -, mod
They will be analysed ascendingly in the following order:
leq < mod
- < mod
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
leq(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
leq(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
leq(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
leq(
0',
y) →
trueleq(
s(
x),
0') →
falseleq(
s(
x),
s(
y)) →
leq(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
y-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
mod(
0',
y) →
0'mod(
s(
x),
0') →
0'mod(
s(
x),
s(
y)) →
if(
leq(
y,
x),
mod(
-(
s(
x),
s(
y)),
s(
y)),
s(
x))
Types:
leq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
if :: true:false → 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, mod
They will be analysed ascendingly in the following order:
- < mod
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n276_0),
gen_0':s3_0(
n276_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n276
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n276_0, 1)), gen_0':s3_0(+(n276_0, 1))) →RΩ(1)
-(gen_0':s3_0(n276_0), gen_0':s3_0(n276_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
leq(
0',
y) →
trueleq(
s(
x),
0') →
falseleq(
s(
x),
s(
y)) →
leq(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
y-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
mod(
0',
y) →
0'mod(
s(
x),
0') →
0'mod(
s(
x),
s(
y)) →
if(
leq(
y,
x),
mod(
-(
s(
x),
s(
y)),
s(
y)),
s(
x))
Types:
leq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
if :: true:false → 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
-(gen_0':s3_0(n276_0), gen_0':s3_0(n276_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n2760)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
mod
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol mod.
(14) Obligation:
TRS:
Rules:
leq(
0',
y) →
trueleq(
s(
x),
0') →
falseleq(
s(
x),
s(
y)) →
leq(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
y-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
mod(
0',
y) →
0'mod(
s(
x),
0') →
0'mod(
s(
x),
s(
y)) →
if(
leq(
y,
x),
mod(
-(
s(
x),
s(
y)),
s(
y)),
s(
x))
Types:
leq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
if :: true:false → 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
-(gen_0':s3_0(n276_0), gen_0':s3_0(n276_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n2760)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
leq(
0',
y) →
trueleq(
s(
x),
0') →
falseleq(
s(
x),
s(
y)) →
leq(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
y-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
mod(
0',
y) →
0'mod(
s(
x),
0') →
0'mod(
s(
x),
s(
y)) →
if(
leq(
y,
x),
mod(
-(
s(
x),
s(
y)),
s(
y)),
s(
x))
Types:
leq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
if :: true:false → 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
-(gen_0':s3_0(n276_0), gen_0':s3_0(n276_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n2760)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
leq(
0',
y) →
trueleq(
s(
x),
0') →
falseleq(
s(
x),
s(
y)) →
leq(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
y-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
mod(
0',
y) →
0'mod(
s(
x),
0') →
0'mod(
s(
x),
s(
y)) →
if(
leq(
y,
x),
mod(
-(
s(
x),
s(
y)),
s(
y)),
s(
x))
Types:
leq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
if :: true:false → 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
mod :: 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
leq(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)