(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(true, x, y, z) → g(gt(x, y), x, y, z)
g(true, x, y, z) → f(gt(x, z), x, s(y), z)
g(true, x, y, z) → f(gt(x, z), x, y, s(z))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
gt(s(u), s(v)) →+ gt(u, v)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [u / s(u), v / s(v)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(true, x, y, z) → g(gt(x, y), x, y, z)
g(true, x, y, z) → f(gt(x, z), x, s(y), z)
g(true, x, y, z) → f(gt(x, z), x, y, s(z))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(true, x, y, z) → g(gt(x, y), x, y, z)
g(true, x, y, z) → f(gt(x, z), x, s(y), z)
g(true, x, y, z) → f(gt(x, z), x, y, s(z))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f:g
true :: true:false
g :: true:false → s:0' → s:0' → s:0' → f:g
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f:g1_0 :: f:g
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
g,
gtThey will be analysed ascendingly in the following order:
f = g
gt < f
gt < g
(8) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
g(
gt(
x,
y),
x,
y,
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
s(
y),
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
y,
s(
z))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f:g
true :: true:false
g :: true:false → s:0' → s:0' → s:0' → f:g
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f:g1_0 :: f:g
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
gt, f, g
They will be analysed ascendingly in the following order:
f = g
gt < f
gt < g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_s:0'4_0(
n6_0),
gen_s:0'4_0(
n6_0)) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
gt(gen_s:0'4_0(0), gen_s:0'4_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) →RΩ(1)
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
g(
gt(
x,
y),
x,
y,
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
s(
y),
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
y,
s(
z))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f:g
true :: true:false
g :: true:false → s:0' → s:0' → s:0' → f:g
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f:g1_0 :: f:g
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
g(
gt(
x,
y),
x,
y,
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
s(
y),
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
y,
s(
z))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f:g
true :: true:false
g :: true:false → s:0' → s:0' → s:0' → f:g
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f:g1_0 :: f:g
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(15) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
g(
gt(
x,
y),
x,
y,
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
s(
y),
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
y,
s(
z))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f:g
true :: true:false
g :: true:false → s:0' → s:0' → s:0' → f:g
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f:g1_0 :: f:g
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
f(
true,
x,
y,
z) →
g(
gt(
x,
y),
x,
y,
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
s(
y),
z)
g(
true,
x,
y,
z) →
f(
gt(
x,
z),
x,
y,
s(
z))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
f :: true:false → s:0' → s:0' → s:0' → f:g
true :: true:false
g :: true:false → s:0' → s:0' → s:0' → f:g
gt :: s:0' → s:0' → true:false
s :: s:0' → s:0'
0' :: s:0'
false :: true:false
hole_f:g1_0 :: f:g
hole_true:false2_0 :: true:false
hole_s:0'3_0 :: s:0'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)