We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { D(t()) -> 1()
  , D(constant()) -> 0()
  , D(+(x, y)) -> +(D(x), D(y))
  , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
  , D(-(x, y)) -> -(D(x), D(y))
  , D(minus(x)) -> minus(D(x))
  , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
  , D(pow(x, y)) ->
    +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))
  , D(ln(x)) -> div(D(x), x) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { D^#(t()) -> c_1()
  , D^#(constant()) -> c_2()
  , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x))
  , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { D^#(t()) -> c_1()
  , D^#(constant()) -> c_2()
  , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x))
  , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }
Strict Trs:
  { D(t()) -> 1()
  , D(constant()) -> 0()
  , D(+(x, y)) -> +(D(x), D(y))
  , D(*(x, y)) -> +(*(y, D(x)), *(x, D(y)))
  , D(-(x, y)) -> -(D(x), D(y))
  , D(minus(x)) -> minus(D(x))
  , D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2())))
  , D(pow(x, y)) ->
    +(*(*(y, pow(x, -(y, 1()))), D(x)), *(*(pow(x, y), ln(x)), D(y)))
  , D(ln(x)) -> div(D(x), x) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { D^#(t()) -> c_1()
  , D^#(constant()) -> c_2()
  , D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x))
  , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
  Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
  Uargs(c_9) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

                                    [t] = [0]                                          
                                          [0]                                          
                                                                                       
                             [constant] = [0]                                          
                                          [0]                                          
                                                                                       
                            [+](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                            [*](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                            [-](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                            [minus](x1) = [1 0] x1 + [0]                               
                                          [0 0]      [0]                               
                                                                                       
                          [div](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                          [pow](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                                          [0 0]      [0 0]      [0]                    
                                                                                       
                               [ln](x1) = [1 0] x1 + [0]                               
                                          [0 0]      [0]                               
                                                                                       
                              [D^#](x1) = [1]                                          
                                          [0]                                          
                                                                                       
                                  [c_1] = [0]                                          
                                          [0]                                          
                                                                                       
                                  [c_2] = [0]                                          
                                          [0]                                          
                                                                                       
                          [c_3](x1, x2) = [1 0] x1 + [1 0] x2 + [2]                    
                                          [0 1]      [0 1]      [0]                    
                                                                                       
                  [c_4](x1, x2, x3, x4) = [1 0] x2 + [1 0] x4 + [2]                    
                                          [0 1]      [0 1]      [0]                    
                                                                                       
                          [c_5](x1, x2) = [1 0] x1 + [1 0] x2 + [2]                    
                                          [0 1]      [0 1]      [0]                    
                                                                                       
                              [c_6](x1) = [1 0] x1 + [0]                               
                                          [0 1]      [0]                               
                                                                                       
              [c_7](x1, x2, x3, x4, x5) = [1 0] x1 + [1 0] x4 + [2]                    
                                          [0 1]      [0 1]      [0]                    
                                                                                       
  [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [0 0] x1 + [1 0] x4 + [0                     
                                                                 0] x7 + [1 0] x8 + [2]
                                          [2 0]      [0 1]      [1                     
                                                                 0]      [0 1]      [0]
                                                                                       
                          [c_9](x1, x2) = [1 0] x1 + [0]                               
                                          [0 1]      [2]                               

The order satisfies the following ordering constraints:

         [D^#(t())] =  [1]                                    
                       [0]                                    
                    >  [0]                                    
                       [0]                                    
                    =  [c_1()]                                
                                                              
  [D^#(constant())] =  [1]                                    
                       [0]                                    
                    >  [0]                                    
                       [0]                                    
                    =  [c_2()]                                
                                                              
     [D^#(+(x, y))] =  [1]                                    
                       [0]                                    
                    ?  [4]                                    
                       [0]                                    
                    =  [c_3(D^#(x), D^#(y))]                  
                                                              
     [D^#(*(x, y))] =  [1]                                    
                       [0]                                    
                    ?  [4]                                    
                       [0]                                    
                    =  [c_4(y, D^#(x), x, D^#(y))]            
                                                              
     [D^#(-(x, y))] =  [1]                                    
                       [0]                                    
                    ?  [4]                                    
                       [0]                                    
                    =  [c_5(D^#(x), D^#(y))]                  
                                                              
    [D^#(minus(x))] =  [1]                                    
                       [0]                                    
                    >= [1]                                    
                       [0]                                    
                    =  [c_6(D^#(x))]                          
                                                              
   [D^#(div(x, y))] =  [1]                                    
                       [0]                                    
                    ?  [4]                                    
                       [0]                                    
                    =  [c_7(D^#(x), y, x, D^#(y), y)]         
                                                              
   [D^#(pow(x, y))] =  [1]                                    
                       [0]                                    
                    ?  [0 0] x + [0 0] y + [4]                
                       [1 0]     [2 0]     [0]                
                    =  [c_8(y, x, y, D^#(x), x, y, x, D^#(y))]
                                                              
       [D^#(ln(x))] =  [1]                                    
                       [0]                                    
                    ?  [1]                                    
                       [2]                                    
                    =  [c_9(D^#(x), x)]                       
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x))
  , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }
Weak DPs:
  { D^#(t()) -> c_1()
  , D^#(constant()) -> c_2() }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ D^#(t()) -> c_1()
, D^#(constant()) -> c_2() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x))
  , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 5: D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , 6: D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , 7: D^#(ln(x)) -> c_9(D^#(x), x) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                              [+](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                              [*](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                              [-](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                              [minus](x1) = [1] x1 + [0]         
                                                                 
                            [div](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                            [pow](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                                 [ln](x1) = [1] x1 + [2]         
                                                                 
                                [D^#](x1) = [4] x1 + [0]         
                                                                 
                            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                    [c_4](x1, x2, x3, x4) = [1] x2 + [1] x4 + [0]
                                                                 
                            [c_5](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                                [c_6](x1) = [1] x1 + [0]         
                                                                 
                [c_7](x1, x2, x3, x4, x5) = [1] x1 + [1] x4 + [0]
                                                                 
    [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [1] x4 + [1] x8 + [0]
                                                                 
                            [c_9](x1, x2) = [1] x1 + [1]         
  
  The order satisfies the following ordering constraints:
  
      [D^#(+(x, y))] =  [4] x + [4] y + [0]                    
                     >= [4] x + [4] y + [0]                    
                     =  [c_3(D^#(x), D^#(y))]                  
                                                               
      [D^#(*(x, y))] =  [4] x + [4] y + [0]                    
                     >= [4] x + [4] y + [0]                    
                     =  [c_4(y, D^#(x), x, D^#(y))]            
                                                               
      [D^#(-(x, y))] =  [4] x + [4] y + [0]                    
                     >= [4] x + [4] y + [0]                    
                     =  [c_5(D^#(x), D^#(y))]                  
                                                               
     [D^#(minus(x))] =  [4] x + [0]                            
                     >= [4] x + [0]                            
                     =  [c_6(D^#(x))]                          
                                                               
    [D^#(div(x, y))] =  [4] x + [4] y + [8]                    
                     >  [4] x + [4] y + [0]                    
                     =  [c_7(D^#(x), y, x, D^#(y), y)]         
                                                               
    [D^#(pow(x, y))] =  [4] x + [4] y + [8]                    
                     >  [4] x + [4] y + [0]                    
                     =  [c_8(y, x, y, D^#(x), x, y, x, D^#(y))]
                                                               
        [D^#(ln(x))] =  [4] x + [8]                            
                     >  [4] x + [1]                            
                     =  [c_9(D^#(x), x)]                       
                                                               

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x)) }
Weak DPs:
  { D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , 3: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , 5: D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , 6: D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , 7: D^#(ln(x)) -> c_9(D^#(x), x) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                              [+](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                              [*](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                              [-](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                              [minus](x1) = [1] x1 + [0]         
                                                                 
                            [div](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                            [pow](x1, x2) = [1] x1 + [1] x2 + [2]
                                                                 
                                 [ln](x1) = [1] x1 + [2]         
                                                                 
                                [D^#](x1) = [4] x1 + [0]         
                                                                 
                            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                    [c_4](x1, x2, x3, x4) = [1] x2 + [1] x4 + [0]
                                                                 
                            [c_5](x1, x2) = [1] x1 + [1] x2 + [1]
                                                                 
                                [c_6](x1) = [1] x1 + [0]         
                                                                 
                [c_7](x1, x2, x3, x4, x5) = [1] x1 + [1] x4 + [0]
                                                                 
    [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [1] x4 + [1] x8 + [0]
                                                                 
                            [c_9](x1, x2) = [1] x1 + [1]         
  
  The order satisfies the following ordering constraints:
  
      [D^#(+(x, y))] =  [4] x + [4] y + [8]                    
                     >  [4] x + [4] y + [0]                    
                     =  [c_3(D^#(x), D^#(y))]                  
                                                               
      [D^#(*(x, y))] =  [4] x + [4] y + [0]                    
                     >= [4] x + [4] y + [0]                    
                     =  [c_4(y, D^#(x), x, D^#(y))]            
                                                               
      [D^#(-(x, y))] =  [4] x + [4] y + [8]                    
                     >  [4] x + [4] y + [1]                    
                     =  [c_5(D^#(x), D^#(y))]                  
                                                               
     [D^#(minus(x))] =  [4] x + [0]                            
                     >= [4] x + [0]                            
                     =  [c_6(D^#(x))]                          
                                                               
    [D^#(div(x, y))] =  [4] x + [4] y + [8]                    
                     >  [4] x + [4] y + [0]                    
                     =  [c_7(D^#(x), y, x, D^#(y), y)]         
                                                               
    [D^#(pow(x, y))] =  [4] x + [4] y + [8]                    
                     >  [4] x + [4] y + [0]                    
                     =  [c_8(y, x, y, D^#(x), x, y, x, D^#(y))]
                                                               
        [D^#(ln(x))] =  [4] x + [8]                            
                     >  [4] x + [1]                            
                     =  [c_9(D^#(x), x)]                       
                                                               

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x)) }
Weak DPs:
  { D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , 2: D^#(minus(x)) -> c_6(D^#(x))
  , 3: D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , 4: D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , 5: D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , 6: D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , 7: D^#(ln(x)) -> c_9(D^#(x), x) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_3) = {1, 2}, Uargs(c_4) = {2, 4}, Uargs(c_5) = {1, 2},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 4}, Uargs(c_8) = {4, 8},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                              [+](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                              [*](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                              [-](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                              [minus](x1) = [1] x1 + [4]         
                                                                 
                            [div](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                            [pow](x1, x2) = [1] x1 + [1] x2 + [4]
                                                                 
                                 [ln](x1) = [1] x1 + [4]         
                                                                 
                                [D^#](x1) = [2] x1 + [0]         
                                                                 
                            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                    [c_4](x1, x2, x3, x4) = [1] x2 + [1] x4 + [0]
                                                                 
                            [c_5](x1, x2) = [1] x1 + [1] x2 + [0]
                                                                 
                                [c_6](x1) = [1] x1 + [1]         
                                                                 
                [c_7](x1, x2, x3, x4, x5) = [1] x1 + [1] x4 + [0]
                                                                 
    [c_8](x1, x2, x3, x4, x5, x6, x7, x8) = [1] x4 + [1] x8 + [0]
                                                                 
                            [c_9](x1, x2) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
      [D^#(+(x, y))] = [2] x + [2] y + [8]                    
                     > [2] x + [2] y + [0]                    
                     = [c_3(D^#(x), D^#(y))]                  
                                                              
      [D^#(*(x, y))] = [2] x + [2] y + [8]                    
                     > [2] x + [2] y + [0]                    
                     = [c_4(y, D^#(x), x, D^#(y))]            
                                                              
      [D^#(-(x, y))] = [2] x + [2] y + [8]                    
                     > [2] x + [2] y + [0]                    
                     = [c_5(D^#(x), D^#(y))]                  
                                                              
     [D^#(minus(x))] = [2] x + [8]                            
                     > [2] x + [1]                            
                     = [c_6(D^#(x))]                          
                                                              
    [D^#(div(x, y))] = [2] x + [2] y + [8]                    
                     > [2] x + [2] y + [0]                    
                     = [c_7(D^#(x), y, x, D^#(y), y)]         
                                                              
    [D^#(pow(x, y))] = [2] x + [2] y + [8]                    
                     > [2] x + [2] y + [0]                    
                     = [c_8(y, x, y, D^#(x), x, y, x, D^#(y))]
                                                              
        [D^#(ln(x))] = [2] x + [8]                            
                     > [2] x + [0]                            
                     = [c_9(D^#(x), x)]                       
                                                              

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
  , D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
  , D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
  , D^#(minus(x)) -> c_6(D^#(x))
  , D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
  , D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
  , D^#(ln(x)) -> c_9(D^#(x), x) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ D^#(+(x, y)) -> c_3(D^#(x), D^#(y))
, D^#(*(x, y)) -> c_4(y, D^#(x), x, D^#(y))
, D^#(-(x, y)) -> c_5(D^#(x), D^#(y))
, D^#(minus(x)) -> c_6(D^#(x))
, D^#(div(x, y)) -> c_7(D^#(x), y, x, D^#(y), y)
, D^#(pow(x, y)) -> c_8(y, x, y, D^#(x), x, y, x, D^#(y))
, D^#(ln(x)) -> c_9(D^#(x), x) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))