(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
D(minus(x)) → minus(D(x))
D(div(x, y)) → -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
D(+(x, y)) →+ +(D(x), D(y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / +(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
D(t) → 1'
D(constant) → 0'
D(+'(x, y)) → +'(D(x), D(y))
D(*'(x, y)) → +'(*'(y, D(x)), *'(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
D(minus(x)) → minus(D(x))
D(div(x, y)) → -(div(D(x), y), div(*'(x, D(y)), pow(y, 2')))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → +'(*'(*'(y, pow(x, -(y, 1'))), D(x)), *'(*'(pow(x, y), ln(x)), D(y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
D(t) → 1'
D(constant) → 0'
D(+'(x, y)) → +'(D(x), D(y))
D(*'(x, y)) → +'(*'(y, D(x)), *'(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
D(minus(x)) → minus(D(x))
D(div(x, y)) → -(div(D(x), y), div(*'(x, D(y)), pow(y, 2')))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → +'(*'(*'(y, pow(x, -(y, 1'))), D(x)), *'(*'(pow(x, y), ln(x)), D(y)))
Types:
D :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
t :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
1' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
constant :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
0' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
+' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
*' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
- :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
minus :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
div :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
pow :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
2' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
ln :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
hole_t:1':constant:0':+':*':-:minus:div:2':pow:ln1_0 :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0 :: Nat → t:1':constant:0':+':*':-:minus:div:2':pow:ln
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
D
(8) Obligation:
TRS:
Rules:
D(
t) →
1'D(
constant) →
0'D(
+'(
x,
y)) →
+'(
D(
x),
D(
y))
D(
*'(
x,
y)) →
+'(
*'(
y,
D(
x)),
*'(
x,
D(
y)))
D(
-(
x,
y)) →
-(
D(
x),
D(
y))
D(
minus(
x)) →
minus(
D(
x))
D(
div(
x,
y)) →
-(
div(
D(
x),
y),
div(
*'(
x,
D(
y)),
pow(
y,
2')))
D(
ln(
x)) →
div(
D(
x),
x)
D(
pow(
x,
y)) →
+'(
*'(
*'(
y,
pow(
x,
-(
y,
1'))),
D(
x)),
*'(
*'(
pow(
x,
y),
ln(
x)),
D(
y)))
Types:
D :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
t :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
1' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
constant :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
0' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
+' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
*' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
- :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
minus :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
div :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
pow :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
2' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
ln :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
hole_t:1':constant:0':+':*':-:minus:div:2':pow:ln1_0 :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0 :: Nat → t:1':constant:0':+':*':-:minus:div:2':pow:ln
Generator Equations:
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(0) ⇔ t
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(+(x, 1)) ⇔ +'(t, gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(x))
The following defined symbols remain to be analysed:
D
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
D(
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(0))
Induction Step:
D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(+(n4_0, 1))) →RΩ(1)
+'(D(t), D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(n4_0))) →RΩ(1)
+'(1', D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(n4_0))) →IH
+'(1', *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
D(
t) →
1'D(
constant) →
0'D(
+'(
x,
y)) →
+'(
D(
x),
D(
y))
D(
*'(
x,
y)) →
+'(
*'(
y,
D(
x)),
*'(
x,
D(
y)))
D(
-(
x,
y)) →
-(
D(
x),
D(
y))
D(
minus(
x)) →
minus(
D(
x))
D(
div(
x,
y)) →
-(
div(
D(
x),
y),
div(
*'(
x,
D(
y)),
pow(
y,
2')))
D(
ln(
x)) →
div(
D(
x),
x)
D(
pow(
x,
y)) →
+'(
*'(
*'(
y,
pow(
x,
-(
y,
1'))),
D(
x)),
*'(
*'(
pow(
x,
y),
ln(
x)),
D(
y)))
Types:
D :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
t :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
1' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
constant :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
0' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
+' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
*' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
- :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
minus :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
div :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
pow :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
2' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
ln :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
hole_t:1':constant:0':+':*':-:minus:div:2':pow:ln1_0 :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0 :: Nat → t:1':constant:0':+':*':-:minus:div:2':pow:ln
Lemmas:
D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(0) ⇔ t
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(+(x, 1)) ⇔ +'(t, gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
D(
t) →
1'D(
constant) →
0'D(
+'(
x,
y)) →
+'(
D(
x),
D(
y))
D(
*'(
x,
y)) →
+'(
*'(
y,
D(
x)),
*'(
x,
D(
y)))
D(
-(
x,
y)) →
-(
D(
x),
D(
y))
D(
minus(
x)) →
minus(
D(
x))
D(
div(
x,
y)) →
-(
div(
D(
x),
y),
div(
*'(
x,
D(
y)),
pow(
y,
2')))
D(
ln(
x)) →
div(
D(
x),
x)
D(
pow(
x,
y)) →
+'(
*'(
*'(
y,
pow(
x,
-(
y,
1'))),
D(
x)),
*'(
*'(
pow(
x,
y),
ln(
x)),
D(
y)))
Types:
D :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
t :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
1' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
constant :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
0' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
+' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
*' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
- :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
minus :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
div :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
pow :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
2' :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
ln :: t:1':constant:0':+':*':-:minus:div:2':pow:ln → t:1':constant:0':+':*':-:minus:div:2':pow:ln
hole_t:1':constant:0':+':*':-:minus:div:2':pow:ln1_0 :: t:1':constant:0':+':*':-:minus:div:2':pow:ln
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0 :: Nat → t:1':constant:0':+':*':-:minus:div:2':pow:ln
Lemmas:
D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(0) ⇔ t
gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(+(x, 1)) ⇔ +'(t, gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
D(gen_t:1':constant:0':+':*':-:minus:div:2':pow:ln2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)