0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 395 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 97 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 LowerBoundsProof (⇔, 0 ms)
↳14 BOUNDS(n^1, INF)
↳15 typed CpxTrs
↳16 LowerBoundsProof (⇔, 0 ms)
↳17 BOUNDS(n^1, INF)
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^1, INF)
w(r(x)) → r(w(x))
b(r(x)) → r(b(x))
b(w(x)) → w(b(x))
w(r(x)) → r(w(x))
b(r(x)) → r(b(x))
b(w(x)) → w(b(x))
They will be analysed ascendingly in the following order:
w < b
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
The following defined symbols remain to be analysed:
w, b
They will be analysed ascendingly in the following order:
w < b
Induction Base:
w(gen_r2_0(+(1, 0)))
Induction Step:
w(gen_r2_0(+(1, +(n4_0, 1)))) →RΩ(1)
r(w(gen_r2_0(+(1, n4_0)))) →IH
r(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
The following defined symbols remain to be analysed:
b
Induction Base:
b(gen_r2_0(+(1, 0)))
Induction Step:
b(gen_r2_0(+(1, +(n130_0, 1)))) →RΩ(1)
r(b(gen_r2_0(+(1, n130_0)))) →IH
r(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
b(gen_r2_0(+(1, n130_0))) → *3_0, rt ∈ Ω(n1300)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
No more defined symbols left to analyse.
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
b(gen_r2_0(+(1, n130_0))) → *3_0, rt ∈ Ω(n1300)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
No more defined symbols left to analyse.
Lemmas:
w(gen_r2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
No more defined symbols left to analyse.