(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0) → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0) → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0), c)
fold(t, x, 0) → t
fold(t, x, s(n)) → f(fold(t, x, n), x)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0', c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0'), c)
fold(t, x, 0') → t
fold(t, x, s(n)) → f(fold(t, x, n), x)
S is empty.
Rewrite Strategy: FULL
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
triple/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(b, c), C) → triple(b, s(c))
f'(triple(b, c), B) → f(triple(b, c), A)
f'(triple(b, c), A) → f''(foldB(triple(0', c), b))
f''(triple(b, c)) → foldC(triple(b, 0'), c)
fold(t, x, 0') → t
fold(t, x, s(n)) → f(fold(t, x, n), x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(b, c), C) → triple(b, s(c))
f'(triple(b, c), B) → f(triple(b, c), A)
f'(triple(b, c), A) → f''(foldB(triple(0', c), b))
f''(triple(b, c)) → foldC(triple(b, 0'), c)
fold(t, x, 0') → t
fold(t, x, s(n)) → f(fold(t, x, n), x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
foldB,
f,
foldC,
f',
f'',
foldThey will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(8) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldB, foldC, f', f'', fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldB, foldC, f'', fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(12) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldB, foldC, fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(14) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC, foldB, fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0',
0'),
gen_0':s4_0(
n143_0)) →
triple(
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n143
0)
Induction Base:
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldC(triple(0', 0'), gen_0':s4_0(+(n143_0, 1))) →RΩ(1)
f(foldC(triple(0', 0'), gen_0':s4_0(n143_0)), C) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldB, f, f', f'', fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldB(
triple(
0',
0'),
gen_0':s4_0(
n2097_0)) →
triple(
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n2097
0)
Induction Base:
foldB(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldB(triple(0', 0'), gen_0':s4_0(+(n2097_0, 1))) →RΩ(1)
f(foldB(triple(0', 0'), gen_0':s4_0(n2097_0)), B) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), B) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(B)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(0', 0'), gen_0':s4_0(0)) →LΩ(1)
triple(gen_0':s4_0(0), gen_0':s4_0(0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldC, f', f'', fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(22) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldC, f'', fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(24) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldC, fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(25) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(26) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC, fold
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
f < fold
foldC = f'
foldC = f''
f' = f''
(27) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0',
0'),
gen_0':s4_0(
n4174_0)) →
triple(
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n4174
0)
Induction Base:
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldC(triple(0', 0'), gen_0':s4_0(+(n4174_0, 1))) →RΩ(1)
f(foldC(triple(0', 0'), gen_0':s4_0(n4174_0)), C) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →LΩ(1)
f''(triple(gen_0':s4_0(0), gen_0':s4_0(0))) →RΩ(1)
foldC(triple(gen_0':s4_0(0), 0'), gen_0':s4_0(0)) →RΩ(1)
triple(gen_0':s4_0(0), 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(28) Complex Obligation (BEST)
(29) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4174_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n41740)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
fold
(30) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fold(
triple(
0',
0'),
A,
gen_0':s4_0(
n6349_0)) →
triple(
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n6349
0)
Induction Base:
fold(triple(0', 0'), A, gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
fold(triple(0', 0'), A, gen_0':s4_0(+(n6349_0, 1))) →RΩ(1)
f(fold(triple(0', 0'), A, gen_0':s4_0(n6349_0)), A) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(A)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →LΩ(1)
f''(triple(gen_0':s4_0(0), gen_0':s4_0(0))) →RΩ(1)
foldC(triple(gen_0':s4_0(0), 0'), gen_0':s4_0(0)) →LΩ(1)
triple(gen_0':s4_0(0), gen_0':s4_0(0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(31) Complex Obligation (BEST)
(32) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4174_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n41740)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
fold(triple(0', 0'), A, gen_0':s4_0(n6349_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n63490)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n4174_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n41740)
(34) BOUNDS(n^1, INF)
(35) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4174_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n41740)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
fold(triple(0', 0'), A, gen_0':s4_0(n6349_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n63490)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(36) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n4174_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n41740)
(37) BOUNDS(n^1, INF)
(38) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4174_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n41740)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n4174_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n41740)
(40) BOUNDS(n^1, INF)
(41) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2097_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20970)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(42) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
(43) BOUNDS(n^1, INF)
(44) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
fold(
t,
x,
0') →
tfold(
t,
x,
s(
n)) →
f(
fold(
t,
x,
n),
x)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
fold :: triple → A:B:C → 0':s → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(45) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
(46) BOUNDS(n^1, INF)