We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { f(f(x)) -> f(c(f(x))) , f(f(x)) -> f(d(f(x))) , g(c(x)) -> x , g(c(0())) -> g(d(1())) , g(c(1())) -> g(d(0())) , g(d(x)) -> x } Obligation: runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 1. The enriched problem is compatible with the following automaton. { f_0(2) -> 1 , f_0(3) -> 1 , f_0(5) -> 1 , f_0(6) -> 1 , c_0(2) -> 2 , c_0(2) -> 4 , c_0(3) -> 2 , c_0(3) -> 4 , c_0(5) -> 2 , c_0(5) -> 4 , c_0(6) -> 2 , c_0(6) -> 4 , d_0(2) -> 3 , d_0(2) -> 4 , d_0(3) -> 3 , d_0(3) -> 4 , d_0(5) -> 3 , d_0(5) -> 4 , d_0(6) -> 3 , d_0(6) -> 4 , d_1(8) -> 7 , g_0(2) -> 4 , g_0(3) -> 4 , g_0(5) -> 4 , g_0(6) -> 4 , g_1(7) -> 4 , 0_0() -> 4 , 0_0() -> 5 , 0_1() -> 4 , 0_1() -> 8 , 1_0() -> 4 , 1_0() -> 6 , 1_1() -> 4 , 1_1() -> 8 } Hurray, we answered YES(?,O(n^1))