*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: append(l1,l2) -> ifappend(l1,l2,l1) hd(cons(x,l)) -> x ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() is_empty(nil()) -> true() tl(cons(x,l)) -> l Weak DP Rules: Weak TRS Rules: Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0} Obligation: Full basic terms: {append,hd,ifappend,is_empty,tl}/{cons,false,nil,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(append) = [1] x1 + [2] x2 + [0] p(cons) = [1] x1 + [1] x2 + [9] p(false) = [0] p(hd) = [2] x1 + [0] p(ifappend) = [2] x2 + [1] x3 + [0] p(is_empty) = [0] p(nil) = [0] p(tl) = [2] x1 + [0] p(true) = [0] Following rules are strictly oriented: hd(cons(x,l)) = [2] l + [2] x + [18] > [1] x + [0] = x tl(cons(x,l)) = [2] l + [2] x + [18] > [1] l + [0] = l Following rules are (at-least) weakly oriented: append(l1,l2) = [1] l1 + [2] l2 + [0] >= [1] l1 + [2] l2 + [0] = ifappend(l1,l2,l1) ifappend(l1,l2,cons(x,l)) = [1] l + [2] l2 + [1] x + [9] >= [1] l + [2] l2 + [1] x + [9] = cons(x,append(l,l2)) ifappend(l1,l2,nil()) = [2] l2 + [0] >= [1] l2 + [0] = l2 is_empty(cons(x,l)) = [0] >= [0] = false() is_empty(nil()) = [0] >= [0] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: append(l1,l2) -> ifappend(l1,l2,l1) ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() is_empty(nil()) -> true() Weak DP Rules: Weak TRS Rules: hd(cons(x,l)) -> x tl(cons(x,l)) -> l Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0} Obligation: Full basic terms: {append,hd,ifappend,is_empty,tl}/{cons,false,nil,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(append) = [4] x1 + [1] x2 + [8] p(cons) = [1] x1 + [1] x2 + [4] p(false) = [1] p(hd) = [2] x1 + [4] p(ifappend) = [1] x2 + [4] x3 + [0] p(is_empty) = [8] p(nil) = [2] p(tl) = [2] x1 + [2] p(true) = [8] Following rules are strictly oriented: append(l1,l2) = [4] l1 + [1] l2 + [8] > [4] l1 + [1] l2 + [0] = ifappend(l1,l2,l1) ifappend(l1,l2,cons(x,l)) = [4] l + [1] l2 + [4] x + [16] > [4] l + [1] l2 + [1] x + [12] = cons(x,append(l,l2)) ifappend(l1,l2,nil()) = [1] l2 + [8] > [1] l2 + [0] = l2 is_empty(cons(x,l)) = [8] > [1] = false() Following rules are (at-least) weakly oriented: hd(cons(x,l)) = [2] l + [2] x + [12] >= [1] x + [0] = x is_empty(nil()) = [8] >= [8] = true() tl(cons(x,l)) = [2] l + [2] x + [10] >= [1] l + [0] = l *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: is_empty(nil()) -> true() Weak DP Rules: Weak TRS Rules: append(l1,l2) -> ifappend(l1,l2,l1) hd(cons(x,l)) -> x ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() tl(cons(x,l)) -> l Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0} Obligation: Full basic terms: {append,hd,ifappend,is_empty,tl}/{cons,false,nil,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(append) = [1] x1 + [2] x2 + [0] p(cons) = [1] x1 + [1] x2 + [0] p(false) = [1] p(hd) = [1] x1 + [0] p(ifappend) = [2] x2 + [1] x3 + [0] p(is_empty) = [1] p(nil) = [0] p(tl) = [2] x1 + [0] p(true) = [0] Following rules are strictly oriented: is_empty(nil()) = [1] > [0] = true() Following rules are (at-least) weakly oriented: append(l1,l2) = [1] l1 + [2] l2 + [0] >= [1] l1 + [2] l2 + [0] = ifappend(l1,l2,l1) hd(cons(x,l)) = [1] l + [1] x + [0] >= [1] x + [0] = x ifappend(l1,l2,cons(x,l)) = [1] l + [2] l2 + [1] x + [0] >= [1] l + [2] l2 + [1] x + [0] = cons(x,append(l,l2)) ifappend(l1,l2,nil()) = [2] l2 + [0] >= [1] l2 + [0] = l2 is_empty(cons(x,l)) = [1] >= [1] = false() tl(cons(x,l)) = [2] l + [2] x + [0] >= [1] l + [0] = l Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: append(l1,l2) -> ifappend(l1,l2,l1) hd(cons(x,l)) -> x ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) ifappend(l1,l2,nil()) -> l2 is_empty(cons(x,l)) -> false() is_empty(nil()) -> true() tl(cons(x,l)) -> l Signature: {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0} Obligation: Full basic terms: {append,hd,ifappend,is_empty,tl}/{cons,false,nil,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).