(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cond1(true, s(x12_4), 0) →+ cond1(true, x12_4, 0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x12_4 / s(x12_4)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0'), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0'), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0'), x, p(y))
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
add(0', x) → x
add(s(x), y) → s(add(x, y))
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0'), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0'), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0'), x, p(y))
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
add(0', x) → x
add(s(x), y) → s(add(x, y))
eq(0', 0') → true
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
p(0') → 0'
p(s(x)) → x
Types:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
cond1,
cond2,
gr,
add,
cond3,
eqThey will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
cond1 = cond3
gr < cond2
add < cond2
cond2 = cond3
eq < cond2
gr < cond3
add < cond3
(8) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
gr, cond1, cond2, add, cond3, eq
They will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
cond1 = cond3
gr < cond2
add < cond2
cond2 = cond3
eq < cond2
gr < cond3
add < cond3
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gr(
gen_0':s4_0(
n6_0),
gen_0':s4_0(
n6_0)) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
gr(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
false
Induction Step:
gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
add, cond1, cond2, cond3, eq
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
add < cond2
cond2 = cond3
eq < cond2
add < cond3
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add(
gen_0':s4_0(
n313_0),
gen_0':s4_0(
b)) →
gen_0':s4_0(
+(
n313_0,
b)), rt ∈ Ω(1 + n313
0)
Induction Base:
add(gen_0':s4_0(0), gen_0':s4_0(b)) →RΩ(1)
gen_0':s4_0(b)
Induction Step:
add(gen_0':s4_0(+(n313_0, 1)), gen_0':s4_0(b)) →RΩ(1)
s(add(gen_0':s4_0(n313_0), gen_0':s4_0(b))) →IH
s(gen_0':s4_0(+(b, c314_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
add(gen_0':s4_0(n313_0), gen_0':s4_0(b)) → gen_0':s4_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
eq, cond1, cond2, cond3
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond2 = cond3
eq < cond2
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_0':s4_0(
n946_0),
gen_0':s4_0(
n946_0)) →
true, rt ∈ Ω(1 + n946
0)
Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true
Induction Step:
eq(gen_0':s4_0(+(n946_0, 1)), gen_0':s4_0(+(n946_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n946_0), gen_0':s4_0(n946_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
add(gen_0':s4_0(n313_0), gen_0':s4_0(b)) → gen_0':s4_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
eq(gen_0':s4_0(n946_0), gen_0':s4_0(n946_0)) → true, rt ∈ Ω(1 + n9460)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond2, cond1, cond3
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond2 = cond3
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond2.
(19) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
add(gen_0':s4_0(n313_0), gen_0':s4_0(b)) → gen_0':s4_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
eq(gen_0':s4_0(n946_0), gen_0':s4_0(n946_0)) → true, rt ∈ Ω(1 + n9460)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond1, cond3
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond2 = cond3
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond1.
(21) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
add(gen_0':s4_0(n313_0), gen_0':s4_0(b)) → gen_0':s4_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
eq(gen_0':s4_0(n946_0), gen_0':s4_0(n946_0)) → true, rt ∈ Ω(1 + n9460)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond3
They will be analysed ascendingly in the following order:
cond1 = cond2
cond1 = cond3
cond2 = cond3
(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond3.
(23) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
add(gen_0':s4_0(n313_0), gen_0':s4_0(b)) → gen_0':s4_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
eq(gen_0':s4_0(n946_0), gen_0':s4_0(n946_0)) → true, rt ∈ Ω(1 + n9460)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
add(gen_0':s4_0(n313_0), gen_0':s4_0(b)) → gen_0':s4_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
eq(gen_0':s4_0(n946_0), gen_0':s4_0(n946_0)) → true, rt ∈ Ω(1 + n9460)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(28) BOUNDS(n^1, INF)
(29) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
add(gen_0':s4_0(n313_0), gen_0':s4_0(b)) → gen_0':s4_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(31) BOUNDS(n^1, INF)
(32) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond2(
false,
x,
y) →
cond3(
eq(
x,
y),
x,
y)
cond3(
true,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
p(
x),
y)
cond3(
false,
x,
y) →
cond1(
gr(
add(
x,
y),
0'),
x,
p(
y))
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
add(
0',
x) →
xadd(
s(
x),
y) →
s(
add(
x,
y))
eq(
0',
0') →
trueeq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2:cond3
gr :: 0':s → 0':s → true:false
add :: 0':s → 0':s → 0':s
0' :: 0':s
p :: 0':s → 0':s
false :: true:false
cond3 :: true:false → 0':s → 0':s → cond1:cond2:cond3
eq :: 0':s → 0':s → true:false
s :: 0':s → 0':s
hole_cond1:cond2:cond31_0 :: cond1:cond2:cond3
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(34) BOUNDS(n^1, INF)