(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
qsort(xs) → qs(half(length(xs)), xs)
qs(n, nil) → nil
qs(n, cons(x, xs)) → append(qs(half(n), filterlow(get(n, cons(x, xs)), cons(x, xs))), cons(get(n, cons(x, xs)), qs(half(n), filterhigh(get(n, cons(x, xs)), cons(x, xs)))))
filterlow(n, nil) → nil
filterlow(n, cons(x, xs)) → if1(ge(n, x), n, x, xs)
if1(true, n, x, xs) → filterlow(n, xs)
if1(false, n, x, xs) → cons(x, filterlow(n, xs))
filterhigh(n, nil) → nil
filterhigh(n, cons(x, xs)) → if2(ge(x, n), n, x, xs)
if2(true, n, x, xs) → filterhigh(n, xs)
if2(false, n, x, xs) → cons(x, filterhigh(n, xs))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
append(nil, ys) → ys
append(cons(x, xs), ys) → cons(x, append(xs, ys))
length(nil) → 0
length(cons(x, xs)) → s(length(xs))
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
get(n, nil) → 0
get(n, cons(x, nil)) → x
get(0, cons(x, cons(y, xs))) → x
get(s(n), cons(x, cons(y, xs))) → get(n, cons(y, xs))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
qsort(xs) → qs(half(length(xs)), xs)
qs(n, nil) → nil
qs(n, cons(x, xs)) → append(qs(half(n), filterlow(get(n, cons(x, xs)), cons(x, xs))), cons(get(n, cons(x, xs)), qs(half(n), filterhigh(get(n, cons(x, xs)), cons(x, xs)))))
filterlow(n, nil) → nil
filterlow(n, cons(x, xs)) → if1(ge(n, x), n, x, xs)
if1(true, n, x, xs) → filterlow(n, xs)
if1(false, n, x, xs) → cons(x, filterlow(n, xs))
filterhigh(n, nil) → nil
filterhigh(n, cons(x, xs)) → if2(ge(x, n), n, x, xs)
if2(true, n, x, xs) → filterhigh(n, xs)
if2(false, n, x, xs) → cons(x, filterhigh(n, xs))
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
append(nil, ys) → ys
append(cons(x, xs), ys) → cons(x, append(xs, ys))
length(nil) → 0'
length(cons(x, xs)) → s(length(xs))
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
get(n, nil) → 0'
get(n, cons(x, nil)) → x
get(0', cons(x, cons(y, xs))) → x
get(s(n), cons(x, cons(y, xs))) → get(n, cons(y, xs))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
qsort(xs) → qs(half(length(xs)), xs)
qs(n, nil) → nil
qs(n, cons(x, xs)) → append(qs(half(n), filterlow(get(n, cons(x, xs)), cons(x, xs))), cons(get(n, cons(x, xs)), qs(half(n), filterhigh(get(n, cons(x, xs)), cons(x, xs)))))
filterlow(n, nil) → nil
filterlow(n, cons(x, xs)) → if1(ge(n, x), n, x, xs)
if1(true, n, x, xs) → filterlow(n, xs)
if1(false, n, x, xs) → cons(x, filterlow(n, xs))
filterhigh(n, nil) → nil
filterhigh(n, cons(x, xs)) → if2(ge(x, n), n, x, xs)
if2(true, n, x, xs) → filterhigh(n, xs)
if2(false, n, x, xs) → cons(x, filterhigh(n, xs))
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
append(nil, ys) → ys
append(cons(x, xs), ys) → cons(x, append(xs, ys))
length(nil) → 0'
length(cons(x, xs)) → s(length(xs))
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
get(n, nil) → 0'
get(n, cons(x, nil)) → x
get(0', cons(x, cons(y, xs))) → x
get(s(n), cons(x, cons(y, xs))) → get(n, cons(y, xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
qs,
half,
length,
append,
filterlow,
get,
filterhigh,
geThey will be analysed ascendingly in the following order:
half < qs
append < qs
filterlow < qs
get < qs
filterhigh < qs
ge < filterlow
ge < filterhigh
(6) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
half, qs, length, append, filterlow, get, filterhigh, ge
They will be analysed ascendingly in the following order:
half < qs
append < qs
filterlow < qs
get < qs
filterhigh < qs
ge < filterlow
ge < filterhigh
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s5_0(
*(
2,
n7_0))) →
gen_0':s5_0(
n7_0), rt ∈ Ω(1 + n7
0)
Induction Base:
half(gen_0':s5_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s5_0(*(2, +(n7_0, 1)))) →RΩ(1)
s(half(gen_0':s5_0(*(2, n7_0)))) →IH
s(gen_0':s5_0(c8_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
length, qs, append, filterlow, get, filterhigh, ge
They will be analysed ascendingly in the following order:
append < qs
filterlow < qs
get < qs
filterhigh < qs
ge < filterlow
ge < filterhigh
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(
gen_nil:cons:ys4_0(
n419_0)) →
gen_0':s5_0(
n419_0), rt ∈ Ω(1 + n419
0)
Induction Base:
length(gen_nil:cons:ys4_0(0)) →RΩ(1)
0'
Induction Step:
length(gen_nil:cons:ys4_0(+(n419_0, 1))) →RΩ(1)
s(length(gen_nil:cons:ys4_0(n419_0))) →IH
s(gen_0':s5_0(c420_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
append, qs, filterlow, get, filterhigh, ge
They will be analysed ascendingly in the following order:
append < qs
filterlow < qs
get < qs
filterhigh < qs
ge < filterlow
ge < filterhigh
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol append.
(14) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
get, qs, filterlow, filterhigh, ge
They will be analysed ascendingly in the following order:
filterlow < qs
get < qs
filterhigh < qs
ge < filterlow
ge < filterhigh
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
get(
gen_0':s5_0(
n741_0),
gen_nil:cons:ys4_0(
+(
1,
n741_0))) →
gen_0':s5_0(
0), rt ∈ Ω(1 + n741
0)
Induction Base:
get(gen_0':s5_0(0), gen_nil:cons:ys4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
get(gen_0':s5_0(+(n741_0, 1)), gen_nil:cons:ys4_0(+(1, +(n741_0, 1)))) →RΩ(1)
get(gen_0':s5_0(n741_0), cons(0', gen_nil:cons:ys4_0(n741_0))) →IH
gen_0':s5_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
ge, qs, filterlow, filterhigh
They will be analysed ascendingly in the following order:
filterlow < qs
filterhigh < qs
ge < filterlow
ge < filterhigh
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_0':s5_0(
n1806_0),
gen_0':s5_0(
n1806_0)) →
true, rt ∈ Ω(1 + n1806
0)
Induction Base:
ge(gen_0':s5_0(0), gen_0':s5_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_0':s5_0(+(n1806_0, 1)), gen_0':s5_0(+(n1806_0, 1))) →RΩ(1)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) → true, rt ∈ Ω(1 + n18060)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
filterlow, qs, filterhigh
They will be analysed ascendingly in the following order:
filterlow < qs
filterhigh < qs
(21) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
filterlow(
gen_0':s5_0(
0),
gen_nil:cons:ys4_0(
n2189_0)) →
gen_nil:cons:ys4_0(
0), rt ∈ Ω(1 + n2189
0)
Induction Base:
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(0)) →RΩ(1)
nil
Induction Step:
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(+(n2189_0, 1))) →RΩ(1)
if1(ge(gen_0':s5_0(0), 0'), gen_0':s5_0(0), 0', gen_nil:cons:ys4_0(n2189_0)) →LΩ(1)
if1(true, gen_0':s5_0(0), 0', gen_nil:cons:ys4_0(n2189_0)) →RΩ(1)
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2189_0)) →IH
gen_nil:cons:ys4_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(22) Complex Obligation (BEST)
(23) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) → true, rt ∈ Ω(1 + n18060)
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2189_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n21890)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
filterhigh, qs
They will be analysed ascendingly in the following order:
filterhigh < qs
(24) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
filterhigh(
gen_0':s5_0(
0),
gen_nil:cons:ys4_0(
n2881_0)) →
gen_nil:cons:ys4_0(
0), rt ∈ Ω(1 + n2881
0)
Induction Base:
filterhigh(gen_0':s5_0(0), gen_nil:cons:ys4_0(0)) →RΩ(1)
nil
Induction Step:
filterhigh(gen_0':s5_0(0), gen_nil:cons:ys4_0(+(n2881_0, 1))) →RΩ(1)
if2(ge(0', gen_0':s5_0(0)), gen_0':s5_0(0), 0', gen_nil:cons:ys4_0(n2881_0)) →LΩ(1)
if2(true, gen_0':s5_0(0), 0', gen_nil:cons:ys4_0(n2881_0)) →RΩ(1)
filterhigh(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2881_0)) →IH
gen_nil:cons:ys4_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(25) Complex Obligation (BEST)
(26) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) → true, rt ∈ Ω(1 + n18060)
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2189_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n21890)
filterhigh(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2881_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n28810)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
The following defined symbols remain to be analysed:
qs
(27) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol qs.
(28) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) → true, rt ∈ Ω(1 + n18060)
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2189_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n21890)
filterhigh(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2881_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n28810)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(30) BOUNDS(n^1, INF)
(31) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) → true, rt ∈ Ω(1 + n18060)
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2189_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n21890)
filterhigh(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2881_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n28810)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(33) BOUNDS(n^1, INF)
(34) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) → true, rt ∈ Ω(1 + n18060)
filterlow(gen_0':s5_0(0), gen_nil:cons:ys4_0(n2189_0)) → gen_nil:cons:ys4_0(0), rt ∈ Ω(1 + n21890)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(36) BOUNDS(n^1, INF)
(37) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
ge(gen_0':s5_0(n1806_0), gen_0':s5_0(n1806_0)) → true, rt ∈ Ω(1 + n18060)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(38) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(39) BOUNDS(n^1, INF)
(40) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
get(gen_0':s5_0(n741_0), gen_nil:cons:ys4_0(+(1, n741_0))) → gen_0':s5_0(0), rt ∈ Ω(1 + n7410)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(41) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(42) BOUNDS(n^1, INF)
(43) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
length(gen_nil:cons:ys4_0(n419_0)) → gen_0':s5_0(n419_0), rt ∈ Ω(1 + n4190)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(44) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(45) BOUNDS(n^1, INF)
(46) Obligation:
TRS:
Rules:
qsort(
xs) →
qs(
half(
length(
xs)),
xs)
qs(
n,
nil) →
nilqs(
n,
cons(
x,
xs)) →
append(
qs(
half(
n),
filterlow(
get(
n,
cons(
x,
xs)),
cons(
x,
xs))),
cons(
get(
n,
cons(
x,
xs)),
qs(
half(
n),
filterhigh(
get(
n,
cons(
x,
xs)),
cons(
x,
xs)))))
filterlow(
n,
nil) →
nilfilterlow(
n,
cons(
x,
xs)) →
if1(
ge(
n,
x),
n,
x,
xs)
if1(
true,
n,
x,
xs) →
filterlow(
n,
xs)
if1(
false,
n,
x,
xs) →
cons(
x,
filterlow(
n,
xs))
filterhigh(
n,
nil) →
nilfilterhigh(
n,
cons(
x,
xs)) →
if2(
ge(
x,
n),
n,
x,
xs)
if2(
true,
n,
x,
xs) →
filterhigh(
n,
xs)
if2(
false,
n,
x,
xs) →
cons(
x,
filterhigh(
n,
xs))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
append(
nil,
ys) →
ysappend(
cons(
x,
xs),
ys) →
cons(
x,
append(
xs,
ys))
length(
nil) →
0'length(
cons(
x,
xs)) →
s(
length(
xs))
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
get(
n,
nil) →
0'get(
n,
cons(
x,
nil)) →
xget(
0',
cons(
x,
cons(
y,
xs))) →
xget(
s(
n),
cons(
x,
cons(
y,
xs))) →
get(
n,
cons(
y,
xs))
Types:
qsort :: nil:cons:ys → nil:cons:ys
qs :: 0':s → nil:cons:ys → nil:cons:ys
half :: 0':s → 0':s
length :: nil:cons:ys → 0':s
nil :: nil:cons:ys
cons :: 0':s → nil:cons:ys → nil:cons:ys
append :: nil:cons:ys → nil:cons:ys → nil:cons:ys
filterlow :: 0':s → nil:cons:ys → nil:cons:ys
get :: 0':s → nil:cons:ys → 0':s
filterhigh :: 0':s → nil:cons:ys → nil:cons:ys
if1 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if2 :: true:false → 0':s → 0':s → nil:cons:ys → nil:cons:ys
0' :: 0':s
s :: 0':s → 0':s
ys :: nil:cons:ys
hole_nil:cons:ys1_0 :: nil:cons:ys
hole_0':s2_0 :: 0':s
hole_true:false3_0 :: true:false
gen_nil:cons:ys4_0 :: Nat → nil:cons:ys
gen_0':s5_0 :: Nat → 0':s
Lemmas:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
Generator Equations:
gen_nil:cons:ys4_0(0) ⇔ nil
gen_nil:cons:ys4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons:ys4_0(x))
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
No more defined symbols left to analyse.
(47) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s5_0(*(2, n7_0))) → gen_0':s5_0(n7_0), rt ∈ Ω(1 + n70)
(48) BOUNDS(n^1, INF)