(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(x), x) → f(s(x), round(s(x)))
round(0) → 0
round(0) → s(0)
round(s(0)) → s(0)
round(s(s(x))) → s(s(round(x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
round(s(s(x))) →+ s(s(round(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / s(s(x))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(s(x), x) → f(s(x), round(s(x)))
round(0') → 0'
round(0') → s(0')
round(s(0')) → s(0')
round(s(s(x))) → s(s(round(x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(s(x), x) → f(s(x), round(s(x)))
round(0') → 0'
round(0') → s(0')
round(s(0')) → s(0')
round(s(s(x))) → s(s(round(x)))
Types:
f :: s:0' → s:0' → f
s :: s:0' → s:0'
round :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
roundThey will be analysed ascendingly in the following order:
round < f
(8) Obligation:
TRS:
Rules:
f(
s(
x),
x) →
f(
s(
x),
round(
s(
x)))
round(
0') →
0'round(
0') →
s(
0')
round(
s(
0')) →
s(
0')
round(
s(
s(
x))) →
s(
s(
round(
x)))
Types:
f :: s:0' → s:0' → f
s :: s:0' → s:0'
round :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
round, f
They will be analysed ascendingly in the following order:
round < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
round(
gen_s:0'3_0(
*(
2,
n5_0))) →
gen_s:0'3_0(
*(
2,
n5_0)), rt ∈ Ω(1 + n5
0)
Induction Base:
round(gen_s:0'3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
round(gen_s:0'3_0(*(2, +(n5_0, 1)))) →RΩ(1)
s(s(round(gen_s:0'3_0(*(2, n5_0))))) →IH
s(s(gen_s:0'3_0(*(2, c6_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
s(
x),
x) →
f(
s(
x),
round(
s(
x)))
round(
0') →
0'round(
0') →
s(
0')
round(
s(
0')) →
s(
0')
round(
s(
s(
x))) →
s(
s(
round(
x)))
Types:
f :: s:0' → s:0' → f
s :: s:0' → s:0'
round :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
round(gen_s:0'3_0(*(2, n5_0))) → gen_s:0'3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
f(
s(
x),
x) →
f(
s(
x),
round(
s(
x)))
round(
0') →
0'round(
0') →
s(
0')
round(
s(
0')) →
s(
0')
round(
s(
s(
x))) →
s(
s(
round(
x)))
Types:
f :: s:0' → s:0' → f
s :: s:0' → s:0'
round :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
round(gen_s:0'3_0(*(2, n5_0))) → gen_s:0'3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
round(gen_s:0'3_0(*(2, n5_0))) → gen_s:0'3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
s(
x),
x) →
f(
s(
x),
round(
s(
x)))
round(
0') →
0'round(
0') →
s(
0')
round(
s(
0')) →
s(
0')
round(
s(
s(
x))) →
s(
s(
round(
x)))
Types:
f :: s:0' → s:0' → f
s :: s:0' → s:0'
round :: s:0' → s:0'
0' :: s:0'
hole_f1_0 :: f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
round(gen_s:0'3_0(*(2, n5_0))) → gen_s:0'3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
round(gen_s:0'3_0(*(2, n5_0))) → gen_s:0'3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)