(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(x)) → f(id_inc(c(x, x)))
f(c(s(x), y)) → g(c(x, y))
g(c(s(x), y)) → g(c(y, x))
g(c(x, s(y))) → g(c(y, x))
g(c(x, x)) → f(x)
id_inc(c(x, y)) → c(id_inc(x), id_inc(y))
id_inc(s(x)) → s(id_inc(x))
id_inc(0) → 0
id_inc(0) → s(0)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(s(x)) → f(id_inc(c(x, x)))
f(c(s(x), y)) → g(c(x, y))
g(c(s(x), y)) → g(c(y, x))
g(c(x, s(y))) → g(c(y, x))
g(c(x, x)) → f(x)
id_inc(c(x, y)) → c(id_inc(x), id_inc(y))
id_inc(s(x)) → s(id_inc(x))
id_inc(0') → 0'
id_inc(0') → s(0')
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(s(x)) → f(id_inc(c(x, x)))
f(c(s(x), y)) → g(c(x, y))
g(c(s(x), y)) → g(c(y, x))
g(c(x, s(y))) → g(c(y, x))
g(c(x, x)) → f(x)
id_inc(c(x, y)) → c(id_inc(x), id_inc(y))
id_inc(s(x)) → s(id_inc(x))
id_inc(0') → 0'
id_inc(0') → s(0')
Types:
f :: s:c:0' → f:g
s :: s:c:0' → s:c:0'
id_inc :: s:c:0' → s:c:0'
c :: s:c:0' → s:c:0' → s:c:0'
g :: s:c:0' → f:g
0' :: s:c:0'
hole_f:g1_0 :: f:g
hole_s:c:0'2_0 :: s:c:0'
gen_s:c:0'3_0 :: Nat → s:c:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
id_inc,
gThey will be analysed ascendingly in the following order:
id_inc < f
f = g
(6) Obligation:
TRS:
Rules:
f(
s(
x)) →
f(
id_inc(
c(
x,
x)))
f(
c(
s(
x),
y)) →
g(
c(
x,
y))
g(
c(
s(
x),
y)) →
g(
c(
y,
x))
g(
c(
x,
s(
y))) →
g(
c(
y,
x))
g(
c(
x,
x)) →
f(
x)
id_inc(
c(
x,
y)) →
c(
id_inc(
x),
id_inc(
y))
id_inc(
s(
x)) →
s(
id_inc(
x))
id_inc(
0') →
0'id_inc(
0') →
s(
0')
Types:
f :: s:c:0' → f:g
s :: s:c:0' → s:c:0'
id_inc :: s:c:0' → s:c:0'
c :: s:c:0' → s:c:0' → s:c:0'
g :: s:c:0' → f:g
0' :: s:c:0'
hole_f:g1_0 :: f:g
hole_s:c:0'2_0 :: s:c:0'
gen_s:c:0'3_0 :: Nat → s:c:0'
Generator Equations:
gen_s:c:0'3_0(0) ⇔ 0'
gen_s:c:0'3_0(+(x, 1)) ⇔ s(gen_s:c:0'3_0(x))
The following defined symbols remain to be analysed:
id_inc, f, g
They will be analysed ascendingly in the following order:
id_inc < f
f = g
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
id_inc(
gen_s:c:0'3_0(
n5_0)) →
gen_s:c:0'3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
id_inc(gen_s:c:0'3_0(0)) →RΩ(1)
0'
Induction Step:
id_inc(gen_s:c:0'3_0(+(n5_0, 1))) →RΩ(1)
s(id_inc(gen_s:c:0'3_0(n5_0))) →IH
s(gen_s:c:0'3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
f(
s(
x)) →
f(
id_inc(
c(
x,
x)))
f(
c(
s(
x),
y)) →
g(
c(
x,
y))
g(
c(
s(
x),
y)) →
g(
c(
y,
x))
g(
c(
x,
s(
y))) →
g(
c(
y,
x))
g(
c(
x,
x)) →
f(
x)
id_inc(
c(
x,
y)) →
c(
id_inc(
x),
id_inc(
y))
id_inc(
s(
x)) →
s(
id_inc(
x))
id_inc(
0') →
0'id_inc(
0') →
s(
0')
Types:
f :: s:c:0' → f:g
s :: s:c:0' → s:c:0'
id_inc :: s:c:0' → s:c:0'
c :: s:c:0' → s:c:0' → s:c:0'
g :: s:c:0' → f:g
0' :: s:c:0'
hole_f:g1_0 :: f:g
hole_s:c:0'2_0 :: s:c:0'
gen_s:c:0'3_0 :: Nat → s:c:0'
Lemmas:
id_inc(gen_s:c:0'3_0(n5_0)) → gen_s:c:0'3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:c:0'3_0(0) ⇔ 0'
gen_s:c:0'3_0(+(x, 1)) ⇔ s(gen_s:c:0'3_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(11) Obligation:
TRS:
Rules:
f(
s(
x)) →
f(
id_inc(
c(
x,
x)))
f(
c(
s(
x),
y)) →
g(
c(
x,
y))
g(
c(
s(
x),
y)) →
g(
c(
y,
x))
g(
c(
x,
s(
y))) →
g(
c(
y,
x))
g(
c(
x,
x)) →
f(
x)
id_inc(
c(
x,
y)) →
c(
id_inc(
x),
id_inc(
y))
id_inc(
s(
x)) →
s(
id_inc(
x))
id_inc(
0') →
0'id_inc(
0') →
s(
0')
Types:
f :: s:c:0' → f:g
s :: s:c:0' → s:c:0'
id_inc :: s:c:0' → s:c:0'
c :: s:c:0' → s:c:0' → s:c:0'
g :: s:c:0' → f:g
0' :: s:c:0'
hole_f:g1_0 :: f:g
hole_s:c:0'2_0 :: s:c:0'
gen_s:c:0'3_0 :: Nat → s:c:0'
Lemmas:
id_inc(gen_s:c:0'3_0(n5_0)) → gen_s:c:0'3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:c:0'3_0(0) ⇔ 0'
gen_s:c:0'3_0(+(x, 1)) ⇔ s(gen_s:c:0'3_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
f(
s(
x)) →
f(
id_inc(
c(
x,
x)))
f(
c(
s(
x),
y)) →
g(
c(
x,
y))
g(
c(
s(
x),
y)) →
g(
c(
y,
x))
g(
c(
x,
s(
y))) →
g(
c(
y,
x))
g(
c(
x,
x)) →
f(
x)
id_inc(
c(
x,
y)) →
c(
id_inc(
x),
id_inc(
y))
id_inc(
s(
x)) →
s(
id_inc(
x))
id_inc(
0') →
0'id_inc(
0') →
s(
0')
Types:
f :: s:c:0' → f:g
s :: s:c:0' → s:c:0'
id_inc :: s:c:0' → s:c:0'
c :: s:c:0' → s:c:0' → s:c:0'
g :: s:c:0' → f:g
0' :: s:c:0'
hole_f:g1_0 :: f:g
hole_s:c:0'2_0 :: s:c:0'
gen_s:c:0'3_0 :: Nat → s:c:0'
Lemmas:
id_inc(gen_s:c:0'3_0(n5_0)) → gen_s:c:0'3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:c:0'3_0(0) ⇔ 0'
gen_s:c:0'3_0(+(x, 1)) ⇔ s(gen_s:c:0'3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
id_inc(gen_s:c:0'3_0(n5_0)) → gen_s:c:0'3_0(n5_0), rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
s(
x)) →
f(
id_inc(
c(
x,
x)))
f(
c(
s(
x),
y)) →
g(
c(
x,
y))
g(
c(
s(
x),
y)) →
g(
c(
y,
x))
g(
c(
x,
s(
y))) →
g(
c(
y,
x))
g(
c(
x,
x)) →
f(
x)
id_inc(
c(
x,
y)) →
c(
id_inc(
x),
id_inc(
y))
id_inc(
s(
x)) →
s(
id_inc(
x))
id_inc(
0') →
0'id_inc(
0') →
s(
0')
Types:
f :: s:c:0' → f:g
s :: s:c:0' → s:c:0'
id_inc :: s:c:0' → s:c:0'
c :: s:c:0' → s:c:0' → s:c:0'
g :: s:c:0' → f:g
0' :: s:c:0'
hole_f:g1_0 :: f:g
hole_s:c:0'2_0 :: s:c:0'
gen_s:c:0'3_0 :: Nat → s:c:0'
Lemmas:
id_inc(gen_s:c:0'3_0(n5_0)) → gen_s:c:0'3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:c:0'3_0(0) ⇔ 0'
gen_s:c:0'3_0(+(x, 1)) ⇔ s(gen_s:c:0'3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
id_inc(gen_s:c:0'3_0(n5_0)) → gen_s:c:0'3_0(n5_0), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)