(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
log(x, 0) → baseError
log(x, s(0)) → baseError
log(0, s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0), 0)
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(x), s(y)) →+ le(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
le(s(x), 0') → false
le(0', y) → true
le(s(x), s(y)) → le(x, y)
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
log(x, 0') → baseError
log(x, s(0')) → baseError
log(0', s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0'), 0')
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
le(s(x), 0') → false
le(0', y) → true
le(s(x), s(y)) → le(x, y)
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
log(x, 0') → baseError
log(x, s(0')) → baseError
log(0', s(s(b))) → logZeroError
log(s(x), s(s(b))) → loop(s(x), s(s(b)), s(0'), 0')
loop(x, s(s(b)), s(y), z) → if(le(x, s(y)), x, s(s(b)), s(y), z)
if(true, x, b, y, z) → z
if(false, x, b, y, z) → loop(x, b, times(b, y), s(z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
plus,
times,
loopThey will be analysed ascendingly in the following order:
le < loop
plus < times
times < loop
(8) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
The following defined symbols remain to be analysed:
le, plus, times, loop
They will be analysed ascendingly in the following order:
le < loop
plus < times
times < loop
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_s:0':baseError:logZeroError3_0(
+(
1,
n5_0)),
gen_s:0':baseError:logZeroError3_0(
n5_0)) →
false, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_s:0':baseError:logZeroError3_0(+(1, 0)), gen_s:0':baseError:logZeroError3_0(0)) →RΩ(1)
false
Induction Step:
le(gen_s:0':baseError:logZeroError3_0(+(1, +(n5_0, 1))), gen_s:0':baseError:logZeroError3_0(+(n5_0, 1))) →RΩ(1)
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Lemmas:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
The following defined symbols remain to be analysed:
plus, times, loop
They will be analysed ascendingly in the following order:
plus < times
times < loop
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_s:0':baseError:logZeroError3_0(
n300_0),
gen_s:0':baseError:logZeroError3_0(
b)) →
gen_s:0':baseError:logZeroError3_0(
+(
n300_0,
b)), rt ∈ Ω(1 + n300
0)
Induction Base:
plus(gen_s:0':baseError:logZeroError3_0(0), gen_s:0':baseError:logZeroError3_0(b)) →RΩ(1)
gen_s:0':baseError:logZeroError3_0(b)
Induction Step:
plus(gen_s:0':baseError:logZeroError3_0(+(n300_0, 1)), gen_s:0':baseError:logZeroError3_0(b)) →RΩ(1)
s(plus(gen_s:0':baseError:logZeroError3_0(n300_0), gen_s:0':baseError:logZeroError3_0(b))) →IH
s(gen_s:0':baseError:logZeroError3_0(+(b, c301_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Lemmas:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_s:0':baseError:logZeroError3_0(n300_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(+(n300_0, b)), rt ∈ Ω(1 + n3000)
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
The following defined symbols remain to be analysed:
times, loop
They will be analysed ascendingly in the following order:
times < loop
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_s:0':baseError:logZeroError3_0(
n897_0),
gen_s:0':baseError:logZeroError3_0(
b)) →
gen_s:0':baseError:logZeroError3_0(
*(
n897_0,
b)), rt ∈ Ω(1 + b·n897
0 + n897
0)
Induction Base:
times(gen_s:0':baseError:logZeroError3_0(0), gen_s:0':baseError:logZeroError3_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_s:0':baseError:logZeroError3_0(+(n897_0, 1)), gen_s:0':baseError:logZeroError3_0(b)) →RΩ(1)
plus(gen_s:0':baseError:logZeroError3_0(b), times(gen_s:0':baseError:logZeroError3_0(n897_0), gen_s:0':baseError:logZeroError3_0(b))) →IH
plus(gen_s:0':baseError:logZeroError3_0(b), gen_s:0':baseError:logZeroError3_0(*(c898_0, b))) →LΩ(1 + b)
gen_s:0':baseError:logZeroError3_0(+(b, *(n897_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Lemmas:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_s:0':baseError:logZeroError3_0(n300_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(+(n300_0, b)), rt ∈ Ω(1 + n3000)
times(gen_s:0':baseError:logZeroError3_0(n897_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(*(n897_0, b)), rt ∈ Ω(1 + b·n8970 + n8970)
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
The following defined symbols remain to be analysed:
loop
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol loop.
(19) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Lemmas:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_s:0':baseError:logZeroError3_0(n300_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(+(n300_0, b)), rt ∈ Ω(1 + n3000)
times(gen_s:0':baseError:logZeroError3_0(n897_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(*(n897_0, b)), rt ∈ Ω(1 + b·n8970 + n8970)
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0':baseError:logZeroError3_0(n897_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(*(n897_0, b)), rt ∈ Ω(1 + b·n8970 + n8970)
(21) BOUNDS(n^2, INF)
(22) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Lemmas:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_s:0':baseError:logZeroError3_0(n300_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(+(n300_0, b)), rt ∈ Ω(1 + n3000)
times(gen_s:0':baseError:logZeroError3_0(n897_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(*(n897_0, b)), rt ∈ Ω(1 + b·n8970 + n8970)
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0':baseError:logZeroError3_0(n897_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(*(n897_0, b)), rt ∈ Ω(1 + b·n8970 + n8970)
(24) BOUNDS(n^2, INF)
(25) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Lemmas:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
plus(gen_s:0':baseError:logZeroError3_0(n300_0), gen_s:0':baseError:logZeroError3_0(b)) → gen_s:0':baseError:logZeroError3_0(+(n300_0, b)), rt ∈ Ω(1 + n3000)
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
le(
s(
x),
0') →
falsele(
0',
y) →
truele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
log(
x,
0') →
baseErrorlog(
x,
s(
0')) →
baseErrorlog(
0',
s(
s(
b))) →
logZeroErrorlog(
s(
x),
s(
s(
b))) →
loop(
s(
x),
s(
s(
b)),
s(
0'),
0')
loop(
x,
s(
s(
b)),
s(
y),
z) →
if(
le(
x,
s(
y)),
x,
s(
s(
b)),
s(
y),
z)
if(
true,
x,
b,
y,
z) →
zif(
false,
x,
b,
y,
z) →
loop(
x,
b,
times(
b,
y),
s(
z))
Types:
le :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → false:true
s :: s:0':baseError:logZeroError → s:0':baseError:logZeroError
0' :: s:0':baseError:logZeroError
false :: false:true
true :: false:true
plus :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
times :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
log :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
baseError :: s:0':baseError:logZeroError
logZeroError :: s:0':baseError:logZeroError
loop :: s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
if :: false:true → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError → s:0':baseError:logZeroError
hole_false:true1_0 :: false:true
hole_s:0':baseError:logZeroError2_0 :: s:0':baseError:logZeroError
gen_s:0':baseError:logZeroError3_0 :: Nat → s:0':baseError:logZeroError
Lemmas:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0':baseError:logZeroError3_0(0) ⇔ 0'
gen_s:0':baseError:logZeroError3_0(+(x, 1)) ⇔ s(gen_s:0':baseError:logZeroError3_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_s:0':baseError:logZeroError3_0(+(1, n5_0)), gen_s:0':baseError:logZeroError3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(30) BOUNDS(n^1, INF)