(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
zero(0) → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0, nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
half(s(s(x))) →+ s(half(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(s(x))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/1
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0'))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x)))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0'))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → cons
conviter :: 0':s → cons → cons
cons :: 0':s → cons
if :: true:false → 0':s → cons → cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_cons3_0 :: cons
gen_0':s4_0 :: Nat → 0':s
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
half,
lastbit,
conviterThey will be analysed ascendingly in the following order:
half < conviter
lastbit < conviter
(10) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
zero(
0') →
truezero(
s(
x)) →
falseconv(
x) →
conviter(
x,
cons(
0'))
conviter(
x,
l) →
if(
zero(
x),
x,
l)
if(
true,
x,
l) →
lif(
false,
x,
l) →
conviter(
half(
x),
cons(
lastbit(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → cons
conviter :: 0':s → cons → cons
cons :: 0':s → cons
if :: true:false → 0':s → cons → cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_cons3_0 :: cons
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
half, lastbit, conviter
They will be analysed ascendingly in the following order:
half < conviter
lastbit < conviter
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s4_0(
*(
2,
n6_0))) →
gen_0':s4_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
half(gen_0':s4_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s4_0(*(2, +(n6_0, 1)))) →RΩ(1)
s(half(gen_0':s4_0(*(2, n6_0)))) →IH
s(gen_0':s4_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
zero(
0') →
truezero(
s(
x)) →
falseconv(
x) →
conviter(
x,
cons(
0'))
conviter(
x,
l) →
if(
zero(
x),
x,
l)
if(
true,
x,
l) →
lif(
false,
x,
l) →
conviter(
half(
x),
cons(
lastbit(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → cons
conviter :: 0':s → cons → cons
cons :: 0':s → cons
if :: true:false → 0':s → cons → cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_cons3_0 :: cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
lastbit, conviter
They will be analysed ascendingly in the following order:
lastbit < conviter
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lastbit(
gen_0':s4_0(
*(
2,
n308_0))) →
gen_0':s4_0(
0), rt ∈ Ω(1 + n308
0)
Induction Base:
lastbit(gen_0':s4_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
lastbit(gen_0':s4_0(*(2, +(n308_0, 1)))) →RΩ(1)
lastbit(gen_0':s4_0(*(2, n308_0))) →IH
gen_0':s4_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
zero(
0') →
truezero(
s(
x)) →
falseconv(
x) →
conviter(
x,
cons(
0'))
conviter(
x,
l) →
if(
zero(
x),
x,
l)
if(
true,
x,
l) →
lif(
false,
x,
l) →
conviter(
half(
x),
cons(
lastbit(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → cons
conviter :: 0':s → cons → cons
cons :: 0':s → cons
if :: true:false → 0':s → cons → cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_cons3_0 :: cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
lastbit(gen_0':s4_0(*(2, n308_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n3080)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
conviter
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol conviter.
(18) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
zero(
0') →
truezero(
s(
x)) →
falseconv(
x) →
conviter(
x,
cons(
0'))
conviter(
x,
l) →
if(
zero(
x),
x,
l)
if(
true,
x,
l) →
lif(
false,
x,
l) →
conviter(
half(
x),
cons(
lastbit(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → cons
conviter :: 0':s → cons → cons
cons :: 0':s → cons
if :: true:false → 0':s → cons → cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_cons3_0 :: cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
lastbit(gen_0':s4_0(*(2, n308_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n3080)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)
(21) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
zero(
0') →
truezero(
s(
x)) →
falseconv(
x) →
conviter(
x,
cons(
0'))
conviter(
x,
l) →
if(
zero(
x),
x,
l)
if(
true,
x,
l) →
lif(
false,
x,
l) →
conviter(
half(
x),
cons(
lastbit(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → cons
conviter :: 0':s → cons → cons
cons :: 0':s → cons
if :: true:false → 0':s → cons → cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_cons3_0 :: cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
lastbit(gen_0':s4_0(*(2, n308_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n3080)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
lastbit(
0') →
0'lastbit(
s(
0')) →
s(
0')
lastbit(
s(
s(
x))) →
lastbit(
x)
zero(
0') →
truezero(
s(
x)) →
falseconv(
x) →
conviter(
x,
cons(
0'))
conviter(
x,
l) →
if(
zero(
x),
x,
l)
if(
true,
x,
l) →
lif(
false,
x,
l) →
conviter(
half(
x),
cons(
lastbit(
x)))
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → cons
conviter :: 0':s → cons → cons
cons :: 0':s → cons
if :: true:false → 0':s → cons → cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_cons3_0 :: cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s4_0(*(2, n6_0))) → gen_0':s4_0(n6_0), rt ∈ Ω(1 + n60)
(26) BOUNDS(n^1, INF)