(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, y, z) → greater(y, z)
le(s(x), 0, z) → false
le(s(x), s(y), 0) → false
le(s(x), s(y), s(z)) → le(x, y, z)
greater(x, 0) → first
greater(0, s(y)) → second
greater(s(x), s(y)) → greater(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
triple(x) → if(le(x, x, double(x)), x, 0, 0)
if(false, x, y, z) → true
if(first, x, y, z) → if(le(s(x), y, s(z)), s(x), y, s(z))
if(second, x, y, z) → if(le(s(x), s(y), z), s(x), s(y), z)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(x), s(y), s(z)) →+ le(x, y, z)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y), z / s(z)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
le(0', y, z) → greater(y, z)
le(s(x), 0', z) → false
le(s(x), s(y), 0') → false
le(s(x), s(y), s(z)) → le(x, y, z)
greater(x, 0') → first
greater(0', s(y)) → second
greater(s(x), s(y)) → greater(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
triple(x) → if(le(x, x, double(x)), x, 0', 0')
if(false, x, y, z) → true
if(first, x, y, z) → if(le(s(x), y, s(z)), s(x), y, s(z))
if(second, x, y, z) → if(le(s(x), s(y), z), s(x), s(y), z)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
le(0', y, z) → greater(y, z)
le(s(x), 0', z) → false
le(s(x), s(y), 0') → false
le(s(x), s(y), s(z)) → le(x, y, z)
greater(x, 0') → first
greater(0', s(y)) → second
greater(s(x), s(y)) → greater(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
triple(x) → if(le(x, x, double(x)), x, 0', 0')
if(false, x, y, z) → true
if(first, x, y, z) → if(le(s(x), y, s(z)), s(x), y, s(z))
if(second, x, y, z) → if(le(s(x), s(y), z), s(x), s(y), z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
greater,
double,
ifThey will be analysed ascendingly in the following order:
greater < le
le < if
(8) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
greater, le, double, if
They will be analysed ascendingly in the following order:
greater < le
le < if
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
greater(
gen_0':s4_0(
n6_0),
gen_0':s4_0(
n6_0)) →
first, rt ∈ Ω(1 + n6
0)
Induction Base:
greater(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
first
Induction Step:
greater(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) →IH
first
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Lemmas:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
le, double, if
They will be analysed ascendingly in the following order:
le < if
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s4_0(
+(
1,
n295_0)),
gen_0':s4_0(
n295_0),
gen_0':s4_0(
n295_0)) →
false, rt ∈ Ω(1 + n295
0)
Induction Base:
le(gen_0':s4_0(+(1, 0)), gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
false
Induction Step:
le(gen_0':s4_0(+(1, +(n295_0, 1))), gen_0':s4_0(+(n295_0, 1)), gen_0':s4_0(+(n295_0, 1))) →RΩ(1)
le(gen_0':s4_0(+(1, n295_0)), gen_0':s4_0(n295_0), gen_0':s4_0(n295_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Lemmas:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
le(gen_0':s4_0(+(1, n295_0)), gen_0':s4_0(n295_0), gen_0':s4_0(n295_0)) → false, rt ∈ Ω(1 + n2950)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
double, if
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_0':s4_0(
n1154_0)) →
gen_0':s4_0(
*(
2,
n1154_0)), rt ∈ Ω(1 + n1154
0)
Induction Base:
double(gen_0':s4_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s4_0(+(n1154_0, 1))) →RΩ(1)
s(s(double(gen_0':s4_0(n1154_0)))) →IH
s(s(gen_0':s4_0(*(2, c1155_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Lemmas:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
le(gen_0':s4_0(+(1, n295_0)), gen_0':s4_0(n295_0), gen_0':s4_0(n295_0)) → false, rt ∈ Ω(1 + n2950)
double(gen_0':s4_0(n1154_0)) → gen_0':s4_0(*(2, n1154_0)), rt ∈ Ω(1 + n11540)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
if
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol if.
(19) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Lemmas:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
le(gen_0':s4_0(+(1, n295_0)), gen_0':s4_0(n295_0), gen_0':s4_0(n295_0)) → false, rt ∈ Ω(1 + n2950)
double(gen_0':s4_0(n1154_0)) → gen_0':s4_0(*(2, n1154_0)), rt ∈ Ω(1 + n11540)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Lemmas:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
le(gen_0':s4_0(+(1, n295_0)), gen_0':s4_0(n295_0), gen_0':s4_0(n295_0)) → false, rt ∈ Ω(1 + n2950)
double(gen_0':s4_0(n1154_0)) → gen_0':s4_0(*(2, n1154_0)), rt ∈ Ω(1 + n11540)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
(24) BOUNDS(n^1, INF)
(25) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Lemmas:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
le(gen_0':s4_0(+(1, n295_0)), gen_0':s4_0(n295_0), gen_0':s4_0(n295_0)) → false, rt ∈ Ω(1 + n2950)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
le(
0',
y,
z) →
greater(
y,
z)
le(
s(
x),
0',
z) →
falsele(
s(
x),
s(
y),
0') →
falsele(
s(
x),
s(
y),
s(
z)) →
le(
x,
y,
z)
greater(
x,
0') →
firstgreater(
0',
s(
y)) →
secondgreater(
s(
x),
s(
y)) →
greater(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
triple(
x) →
if(
le(
x,
x,
double(
x)),
x,
0',
0')
if(
false,
x,
y,
z) →
trueif(
first,
x,
y,
z) →
if(
le(
s(
x),
y,
s(
z)),
s(
x),
y,
s(
z))
if(
second,
x,
y,
z) →
if(
le(
s(
x),
s(
y),
z),
s(
x),
s(
y),
z)
Types:
le :: 0':s → 0':s → 0':s → false:first:second
0' :: 0':s
greater :: 0':s → 0':s → false:first:second
s :: 0':s → 0':s
false :: false:first:second
first :: false:first:second
second :: false:first:second
double :: 0':s → 0':s
triple :: 0':s → true
if :: false:first:second → 0':s → 0':s → 0':s → true
true :: true
hole_false:first:second1_0 :: false:first:second
hole_0':s2_0 :: 0':s
hole_true3_0 :: true
gen_0':s4_0 :: Nat → 0':s
Lemmas:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
greater(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → first, rt ∈ Ω(1 + n60)
(30) BOUNDS(n^1, INF)