(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
exp(x, 0') → s(0')
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0', x, y, s(0'))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
exp(x, 0') → s(0')
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0', x, y, s(0'))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
times,
exp,
ge,
towerIterThey will be analysed ascendingly in the following order:
plus < times
times < exp
exp < towerIter
ge < towerIter
(6) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, times, exp, ge, towerIter
They will be analysed ascendingly in the following order:
plus < times
times < exp
exp < towerIter
ge < towerIter
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n5_0,
b)), rt ∈ Ω(1 + n5
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n5_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
times, exp, ge, towerIter
They will be analysed ascendingly in the following order:
times < exp
exp < towerIter
ge < towerIter
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s3_0(
n566_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
*(
n566_0,
b)), rt ∈ Ω(1 + b·n566
0 + n566
0)
Induction Base:
times(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s3_0(+(n566_0, 1)), gen_0':s3_0(b)) →RΩ(1)
plus(gen_0':s3_0(b), times(gen_0':s3_0(n566_0), gen_0':s3_0(b))) →IH
plus(gen_0':s3_0(b), gen_0':s3_0(*(c567_0, b))) →LΩ(1 + b)
gen_0':s3_0(+(b, *(n566_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
exp, ge, towerIter
They will be analysed ascendingly in the following order:
exp < towerIter
ge < towerIter
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
exp(
gen_0':s3_0(
a),
gen_0':s3_0(
+(
1,
n1278_0))) →
*4_0, rt ∈ Ω(n1278
0)
Induction Base:
exp(gen_0':s3_0(a), gen_0':s3_0(+(1, 0)))
Induction Step:
exp(gen_0':s3_0(a), gen_0':s3_0(+(1, +(n1278_0, 1)))) →RΩ(1)
times(gen_0':s3_0(a), exp(gen_0':s3_0(a), gen_0':s3_0(+(1, n1278_0)))) →IH
times(gen_0':s3_0(a), *4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
exp(gen_0':s3_0(a), gen_0':s3_0(+(1, n1278_0))) → *4_0, rt ∈ Ω(n12780)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
ge, towerIter
They will be analysed ascendingly in the following order:
ge < towerIter
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_0':s3_0(
n5212_0),
gen_0':s3_0(
n5212_0)) →
true, rt ∈ Ω(1 + n5212
0)
Induction Base:
ge(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_0':s3_0(+(n5212_0, 1)), gen_0':s3_0(+(n5212_0, 1))) →RΩ(1)
ge(gen_0':s3_0(n5212_0), gen_0':s3_0(n5212_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
exp(gen_0':s3_0(a), gen_0':s3_0(+(1, n1278_0))) → *4_0, rt ∈ Ω(n12780)
ge(gen_0':s3_0(n5212_0), gen_0':s3_0(n5212_0)) → true, rt ∈ Ω(1 + n52120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
towerIter
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol towerIter.
(20) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
exp(gen_0':s3_0(a), gen_0':s3_0(+(1, n1278_0))) → *4_0, rt ∈ Ω(n12780)
ge(gen_0':s3_0(n5212_0), gen_0':s3_0(n5212_0)) → true, rt ∈ Ω(1 + n52120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
(22) BOUNDS(n^2, INF)
(23) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
exp(gen_0':s3_0(a), gen_0':s3_0(+(1, n1278_0))) → *4_0, rt ∈ Ω(n12780)
ge(gen_0':s3_0(n5212_0), gen_0':s3_0(n5212_0)) → true, rt ∈ Ω(1 + n52120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
(25) BOUNDS(n^2, INF)
(26) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
exp(gen_0':s3_0(a), gen_0':s3_0(+(1, n1278_0))) → *4_0, rt ∈ Ω(n12780)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
(28) BOUNDS(n^2, INF)
(29) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n566_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n566_0, b)), rt ∈ Ω(1 + b·n5660 + n5660)
(31) BOUNDS(n^2, INF)
(32) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
times(
x,
exp(
x,
y))
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
tower(
x,
y) →
towerIter(
0',
x,
y,
s(
0'))
towerIter(
c,
x,
y,
z) →
help(
ge(
c,
x),
c,
x,
y,
z)
help(
true,
c,
x,
y,
z) →
zhelp(
false,
c,
x,
y,
z) →
towerIter(
s(
c),
x,
y,
exp(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
exp :: 0':s → 0':s → 0':s
ge :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
tower :: 0':s → 0':s → 0':s
towerIter :: 0':s → 0':s → 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(34) BOUNDS(n^1, INF)