(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(0, length(x)), nil, 0, length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(x, y), z) → if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l)
append(nil, y) → y
append(cons(x, y), z) → cons(x, append(y, z))
length(nil) → 0
length(cons(x, y)) → s(length(y))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(0', length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(x, y), z) → if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l)
append(nil, y) → y
append(cons(x, y), z) → cons(x, append(y, z))
length(nil) → 0'
length(cons(x, y)) → s(length(y))

S is empty.
Rewrite Strategy: FULL

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
eq/0
cons/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
ge, length, help, append

They will be analysed ascendingly in the following order:
ge < help
append < help

(8) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
ge, length, help, append

They will be analysed ascendingly in the following order:
ge < help
append < help

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Induction Base:
ge(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true

Induction Step:
ge(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
length, help, append

They will be analysed ascendingly in the following order:
append < help

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
length(gen_nil:cons5_0(n288_0)) → gen_0':s4_0(n288_0), rt ∈ Ω(1 + n2880)

Induction Base:
length(gen_nil:cons5_0(0)) →RΩ(1)
0'

Induction Step:
length(gen_nil:cons5_0(+(n288_0, 1))) →RΩ(1)
s(length(gen_nil:cons5_0(n288_0))) →IH
s(gen_0':s4_0(c289_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
length(gen_nil:cons5_0(n288_0)) → gen_0':s4_0(n288_0), rt ∈ Ω(1 + n2880)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
append, help

They will be analysed ascendingly in the following order:
append < help

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
append(gen_nil:cons5_0(n490_0), gen_nil:cons5_0(b)) → gen_nil:cons5_0(+(n490_0, b)), rt ∈ Ω(1 + n4900)

Induction Base:
append(gen_nil:cons5_0(0), gen_nil:cons5_0(b)) →RΩ(1)
gen_nil:cons5_0(b)

Induction Step:
append(gen_nil:cons5_0(+(n490_0, 1)), gen_nil:cons5_0(b)) →RΩ(1)
cons(append(gen_nil:cons5_0(n490_0), gen_nil:cons5_0(b))) →IH
cons(gen_nil:cons5_0(+(b, c491_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
length(gen_nil:cons5_0(n288_0)) → gen_0':s4_0(n288_0), rt ∈ Ω(1 + n2880)
append(gen_nil:cons5_0(n490_0), gen_nil:cons5_0(b)) → gen_nil:cons5_0(+(n490_0, b)), rt ∈ Ω(1 + n4900)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
help

(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol help.

(19) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
length(gen_nil:cons5_0(n288_0)) → gen_0':s4_0(n288_0), rt ∈ Ω(1 + n2880)
append(gen_nil:cons5_0(n490_0), gen_nil:cons5_0(b)) → gen_nil:cons5_0(+(n490_0, b)), rt ∈ Ω(1 + n4900)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
length(gen_nil:cons5_0(n288_0)) → gen_0':s4_0(n288_0), rt ∈ Ω(1 + n2880)
append(gen_nil:cons5_0(n490_0), gen_nil:cons5_0(b)) → gen_nil:cons5_0(+(n490_0, b)), rt ∈ Ω(1 + n4900)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(24) BOUNDS(n^1, INF)

(25) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
length(gen_nil:cons5_0(n288_0)) → gen_0':s4_0(n288_0), rt ∈ Ω(1 + n2880)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
ge(x, 0') → true
ge(0', s(y)) → false
ge(s(x), s(y)) → ge(x, y)
rev(x) → if(x, eq(length(x)), nil, 0', length(x))
if(x, true, z, c, l) → z
if(x, false, z, c, l) → help(s(c), l, x, z)
help(c, l, cons(y), z) → if(append(y, cons(nil)), ge(c, l), cons(z), c, l)
append(nil, y) → y
append(cons(y), z) → cons(append(y, z))
length(nil) → 0'
length(cons(y)) → s(length(y))

Types:
ge :: 0':s → 0':s → true:false:eq
0' :: 0':s
true :: true:false:eq
s :: 0':s → 0':s
false :: true:false:eq
rev :: nil:cons → nil:cons
if :: nil:cons → true:false:eq → nil:cons → 0':s → 0':s → nil:cons
eq :: 0':s → true:false:eq
length :: nil:cons → 0':s
nil :: nil:cons
help :: 0':s → 0':s → nil:cons → nil:cons → nil:cons
cons :: nil:cons → nil:cons
append :: nil:cons → nil:cons → nil:cons
hole_true:false:eq1_0 :: true:false:eq
hole_0':s2_0 :: 0':s
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(gen_nil:cons5_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)

(30) BOUNDS(n^1, INF)