(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(x, 0) → 0
g(d, s(x)) → s(s(g(d, x)))
g(h, s(0)) → 0
g(h, s(s(x))) → s(g(h, x))
double(x) → g(d, x)
half(x) → g(h, x)
f(s(x), y) → f(half(s(x)), double(y))
f(s(0), y) → y
id(x) → f(x, s(0))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(d, s(x)) →+ s(s(g(d, x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(x, 0') → 0'
g(d, s(x)) → s(s(g(d, x)))
g(h, s(0')) → 0'
g(h, s(s(x))) → s(g(h, x))
double(x) → g(d, x)
half(x) → g(h, x)
f(s(x), y) → f(half(s(x)), double(y))
f(s(0'), y) → y
id(x) → f(x, s(0'))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
g(x, 0') → 0'
g(d, s(x)) → s(s(g(d, x)))
g(h, s(0')) → 0'
g(h, s(s(x))) → s(g(h, x))
double(x) → g(d, x)
half(x) → g(h, x)
f(s(x), y) → f(half(s(x)), double(y))
f(s(0'), y) → y
id(x) → f(x, s(0'))
Types:
g :: d:h → 0':s → 0':s
0' :: 0':s
d :: d:h
s :: 0':s → 0':s
h :: d:h
double :: 0':s → 0':s
half :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
id :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_d:h2_0 :: d:h
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g, f
(8) Obligation:
TRS:
Rules:
g(
x,
0') →
0'g(
d,
s(
x)) →
s(
s(
g(
d,
x)))
g(
h,
s(
0')) →
0'g(
h,
s(
s(
x))) →
s(
g(
h,
x))
double(
x) →
g(
d,
x)
half(
x) →
g(
h,
x)
f(
s(
x),
y) →
f(
half(
s(
x)),
double(
y))
f(
s(
0'),
y) →
yid(
x) →
f(
x,
s(
0'))
Types:
g :: d:h → 0':s → 0':s
0' :: 0':s
d :: d:h
s :: 0':s → 0':s
h :: d:h
double :: 0':s → 0':s
half :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
id :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_d:h2_0 :: d:h
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
g, f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
h,
gen_0':s3_0(
*(
2,
n5_0))) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
g(h, gen_0':s3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
g(h, gen_0':s3_0(*(2, +(n5_0, 1)))) →RΩ(1)
s(g(h, gen_0':s3_0(*(2, n5_0)))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
g(
x,
0') →
0'g(
d,
s(
x)) →
s(
s(
g(
d,
x)))
g(
h,
s(
0')) →
0'g(
h,
s(
s(
x))) →
s(
g(
h,
x))
double(
x) →
g(
d,
x)
half(
x) →
g(
h,
x)
f(
s(
x),
y) →
f(
half(
s(
x)),
double(
y))
f(
s(
0'),
y) →
yid(
x) →
f(
x,
s(
0'))
Types:
g :: d:h → 0':s → 0':s
0' :: 0':s
d :: d:h
s :: 0':s → 0':s
h :: d:h
double :: 0':s → 0':s
half :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
id :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_d:h2_0 :: d:h
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(h, gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
g(
x,
0') →
0'g(
d,
s(
x)) →
s(
s(
g(
d,
x)))
g(
h,
s(
0')) →
0'g(
h,
s(
s(
x))) →
s(
g(
h,
x))
double(
x) →
g(
d,
x)
half(
x) →
g(
h,
x)
f(
s(
x),
y) →
f(
half(
s(
x)),
double(
y))
f(
s(
0'),
y) →
yid(
x) →
f(
x,
s(
0'))
Types:
g :: d:h → 0':s → 0':s
0' :: 0':s
d :: d:h
s :: 0':s → 0':s
h :: d:h
double :: 0':s → 0':s
half :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
id :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_d:h2_0 :: d:h
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(h, gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(h, gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
g(
x,
0') →
0'g(
d,
s(
x)) →
s(
s(
g(
d,
x)))
g(
h,
s(
0')) →
0'g(
h,
s(
s(
x))) →
s(
g(
h,
x))
double(
x) →
g(
d,
x)
half(
x) →
g(
h,
x)
f(
s(
x),
y) →
f(
half(
s(
x)),
double(
y))
f(
s(
0'),
y) →
yid(
x) →
f(
x,
s(
0'))
Types:
g :: d:h → 0':s → 0':s
0' :: 0':s
d :: d:h
s :: 0':s → 0':s
h :: d:h
double :: 0':s → 0':s
half :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
id :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_d:h2_0 :: d:h
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(h, gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(h, gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)