KILLEDRuntime Complexity (full) proof of /tmp/tmpg70Vo7/factorial2.xml
The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF).0 CpxTRS↳1 RenamingProof (⇔, 0 ms)↳2 CpxRelTRS↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)↳4 typed CpxTrs↳5 OrderProof (LOWER BOUND(ID), 0 ms)↳6 typed CpxTrs↳7 RewriteLemmaProof (LOWER BOUND(ID), 793 ms)↳8 BEST↳9 typed CpxTrs↳10 RewriteLemmaProof (LOWER BOUND(ID), 260 ms)↳11 BEST↳12 typed CpxTrs↳13 RewriteLemmaProof (LOWER BOUND(ID), 512 ms)↳14 BEST↳15 typed CpxTrs↳16 typed CpxTrs↳17 typed CpxTrs↳18 typed CpxTrs(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0) → 0
minus(x, 0) → x
minus(0, x) → 0
minus(x, s(y)) → p(minus(x, y))
isZero(0) → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0)), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0))
Rewrite Strategy: FULL(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
S is empty.
Rewrite Strategy: FULL(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(4) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus, times, minus, facIterThey will be analysed ascendingly in the following order:
plus < times
times < facIter
minus < facIter(6) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':sGenerator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))The following defined symbols remain to be analysed:
plus, times, minus, facIterThey will be analysed ascendingly in the following order:
plus < times
times < facIter
minus < facIter(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)Induction Step:
plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n5_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c6_0)))We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':sLemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))The following defined symbols remain to be analysed:
times, minus, facIterThey will be analysed ascendingly in the following order:
times < facIter
minus < facIter(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)Induction Base:
times(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
0'Induction Step:
times(gen_0':s3_0(+(n602_0, 1)), gen_0':s3_0(b)) →RΩ(1)
plus(gen_0':s3_0(b), times(gen_0':s3_0(n602_0), gen_0':s3_0(b))) →IH
plus(gen_0':s3_0(b), gen_0':s3_0(*(c603_0, b))) →LΩ(1 + b)
gen_0':s3_0(+(b, *(n602_0, b)))We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':sLemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))The following defined symbols remain to be analysed:
minus, facIterThey will be analysed ascendingly in the following order:
minus < facIter(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0))) → *4_0, rt ∈ Ω(n13620)Induction Base:
minus(gen_0':s3_0(a), gen_0':s3_0(+(1, 0)))Induction Step:
minus(gen_0':s3_0(a), gen_0':s3_0(+(1, +(n1362_0, 1)))) →RΩ(1)
p(minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0)))) →IH
p(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':sLemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0))) → *4_0, rt ∈ Ω(n13620)Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))The following defined symbols remain to be analysed:
facIter(16) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':sLemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0))) → *4_0, rt ∈ Ω(n13620)Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))No more defined symbols left to analyse.
(17) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':sLemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))No more defined symbols left to analyse.
(18) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':sLemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))No more defined symbols left to analyse.