(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ack,
fThey will be analysed ascendingly in the following order:
ack = f
(6) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f, ack
They will be analysed ascendingly in the following order:
ack = f
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(8) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
ack
They will be analysed ascendingly in the following order:
ack = f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ack(
gen_0':s2_0(
1),
gen_0':s2_0(
+(
1,
n1557_0))) →
*3_0, rt ∈ Ω(n1557
0)
Induction Base:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, 0)))
Induction Step:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, +(n1557_0, 1)))) →RΩ(1)
ack(gen_0':s2_0(0), ack(s(gen_0':s2_0(0)), gen_0':s2_0(+(1, n1557_0)))) →IH
ack(gen_0':s2_0(0), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n1557_0))) → *3_0, rt ∈ Ω(n15570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
ack = f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n1557_0))) → *3_0, rt ∈ Ω(n15570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n1557_0))) → *3_0, rt ∈ Ω(n15570)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n1557_0))) → *3_0, rt ∈ Ω(n15570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ack(gen_0':s2_0(1), gen_0':s2_0(+(1, n1557_0))) → *3_0, rt ∈ Ω(n15570)
(18) BOUNDS(n^1, INF)